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Abstract

In their studies of the brain of the common fruit fly Drosophila melanogaster, neuro-
biologists investigate neural connectivity with the goal to discover how complex be-
haviour is generated. Gaining information on potential connectivity between neurons is
an essential step in their workflow. This thesis presents a way to compute and visualise
such potential connectivity information from segmented neurons. It shortens the tedious
month-long search for potential connectivity down to a few minutes.

Overlaps of arborisations of two or more neurons indicate a potential anatomical
connection, and thus a potential functional connection. The computation of this data
starts from neuron meshes. The meshes—segmented from confocal light-microscopy
images of the fruit fly—are intersected to find overlapping areas, i.e. areas of potential
anatomical connectivity. This information can then help to discover actual functional
connectivity in a neural circuit.

Analysing higher order overlaps, i.e. intersections of more than two arborisations of
segmented neuron data in the same location, poses new challenges. The visualisation in
2D sections or 3D is impeded by visual clutter and occlusion. Computation of relevant
volumetric information becomes difficult for higher order overlaps, because the number
of possible overlaps increases exponentially with the number of arborisations. This
makes the pre-computation for all possible combinations infeasible. Previous tools have
thus been restricted to the quantification and visualisation of pairwise overlaps.

The thesis presents a novel solution addressing these issues for higher order over-
laps. A novel abstracting design is coupled with a modern approach for on-demand
GPU computations. Our tool calculates for the first time volumetric information of
higher order overlaps on the GPU using A-buffers. The thesis addresses the visual com-
plexity of the data with the implementation of an innovative novel design created by the
graphics designer Judith Moosburner. We realised this design using non-photorealistic
rendering techniques and perspicuous user interfaces, including interactive glyphs and
linked views on quantitative overlap information. To complement the neuroscientists’
workflows the resulting interactive tool has been integrated into BrainGazer, a software
tool for advanced visualisation and exploration of neural images and circuit data. Qual-
itative evaluation with neuroscientists and non-expert users demonstrated the utility and
usability of the tool.
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Kurzfassung

Biologen untersuchen neuronale Verbindungen im Gehirn der Fruchtfliege Drosophi-
la melanogaster um die Entstehung komplexen Verhaltens zu verstehen. Informationen
über die potentielle Konnektivität zwischen Neuronen ist dafür essentiell. Diese Diplom-
arbeit beschreibt eine Lösung für die Berechnung und Visualisierung dieser potentiellen
Konnektivität von segmentierten Neuronen. Der bisher mehr-monatige Aufwand einer
Suche nach potentieller Konnektivität reduziert sich auf einige Minuten.

Eine Überlappung zweier oder mehrerer Arborisierungen (Verästelungen von Neu-
ronen) impliziert eine potentielle anatomische Verbindung, was wiederum eine tatsäch-
liche funktionale Verbindung der Neuronen nahe legt. Berechnet werden diese Schnit-
te von Meshes der Neuronen. Die Meshes, segmentiert von Lichtmikroskopiebildern,
werden miteinander geschnitten um überlappende Regionen zu finden. Diese Regionen
potentieller anatomischer Konnektivität helfen bei der Suche nach funktionaler Konnek-
tivität in einem neuronalen Netz.

Die Analyse von Schnitten höherer Ordnung (Überlappungen von mehr als zwei
Arborisierungen) stellt uns vor neue Aufgaben. Die Visualisierung mehrerer Meshes in
2D oder 3D erzeugt Verdeckungen. Die Berechnung der volumetrischen Informationen
wird schwierig, denn die Anzahl der möglichen Schnitte steigt exponentiell mit der An-
zahl der Meshes. Eine Vorberechnung ist daher nicht umsetzbar. Bisherige Werkzeuge
beschränken die Quantifizierung und Visualisierung auf paarweise Schnitte.

Die Diplomarbeit präsentiert eine Implementierung, die sich dieser Probleme wid-
met. Sie verbindet ein neuartiges abstrahierendes Design mit einem modernen Ansatz
für on-demand GPU Berechnungen. Zum ersten Mal werden A-Buffer auf der GPU für
volumetrische Berechnungen genutzt. Das neue innovative Design von Grafikdesignerin
Judith Moosburner behandelt die komplexen visuellen Ansprüche der neuronalen Daten.
Mittels nicht-fotorealistischer Rendering Techniken, interaktiver Glyphen in 2D und
3D, verständlicher Benutzeroberflächen und verlinkter Darstellungen der quantitativen
Daten haben wir das Design verwirklicht. Diese Implementierung wurde in BrainGazer
integriert, um die Arbeitsschritte der Neurowissenschafter zu unterstützen. Eine qualita-
tive Evaluierung mit Neurobiologen und Nichtfachleuten belegt den Nutzen des neuen
Werkzeugs und zeigt, dass es intuitiv verwendbar ist.

vii





Contents

1 Introduction 1
1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Introduction to Neural Circuitry 3
2.1 Circuit Neuroscience . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Drosophila Melanogaster . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Data Acquisition and Enhancement . . . . . . . . . . . . . . . . . . . . 10
2.4 Scientific Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Related Work 15
3.1 Rendering Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Visualisation of Neural Connectivity . . . . . . . . . . . . . . . . . . . 16
3.3 Occlusion and Intersection in Visualisation . . . . . . . . . . . . . . . . 22
3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Information and Interaction Design 23
4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Creating the new Design . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3 Object, Shape, and Colour Design . . . . . . . . . . . . . . . . . . . . 32
4.4 Connectivity and Interaction Design . . . . . . . . . . . . . . . . . . . 35

5 Implementation 39
5.1 Existing Environment: BrainGazer . . . . . . . . . . . . . . . . . . . . 39
5.2 Computational Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.3 Basic Data Structure: A-buffer . . . . . . . . . . . . . . . . . . . . . . 45

6 Volume Estimation and Rendering 49
6.1 Volume Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.2 Quantitative Information . . . . . . . . . . . . . . . . . . . . . . . . . 61

ix



6.3 Rendering Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7 Interaction 73
7.1 Exploration in 3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
7.2 Glyph Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
7.3 Selection of Neuronal Structures . . . . . . . . . . . . . . . . . . . . . 79
7.4 Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

8 Evaluation 83
8.1 Evaluation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
8.2 Quantitative Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 84
8.3 Qualitative Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
8.4 User Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
8.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

9 Conclusion and Future Work 89
9.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
9.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Bibliography 91

x



CHAPTER 1
Introduction

The fruit fly Drosophila melanogaster has long been a popular model organism in the
neuroscience community. More specifically in the field of circuit neuroscience it is
studied to link complex behaviour with neuronal circuits in the brain. In cooperation
with our partners at the Institute of Molecular Pathology (IMP) in Vienna we develop
tools to improve the scientists’ workflows or create novel views on the fly’s data. The
scientists acquire this data via confocal microscopy to create 3D images of Drosophila’s
brain. The images of a few thousand flies are stored, along with meta-information, in a
relational database.

In the course of this thesis I have published and presented many parts of this research
at the 2014 Eurographics Workshop on Visual Computing for Biology and Medicine
(VCBM) [68] and in the Eurographics Computer Graphics Forum (CGF) [69].

1.1 Problem Statement
Neuroscientists investigate relations between genes, neurons, and behaviour to gain in-
sights into how the brain works. They form hypotheses linking behaviour with complex
neuronal circuits. To arrive at such hypotheses they need to investigate their data for
potential connectivity among neurons.

Via confocal light-microscopy the scientists acquire data about shape and location
of single neurons inside the brain of Drosophila. From carefully crafted single-cell
images (i.e. images where a single neuron is genetically marked and fluoresces because
of a special protein) scientists semi-automatically segment neurons into neuron meshes.
Often the source of the segmentation is instead an average of approximately five single-
cell images of the same cell to account for biological variability.
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Tedious pair-wise comparisons of neuron meshes lead the biologists to potential-
connectivity information from which they are able to form hypotheses about connectiv-
ity. A novel hypothesis on connectivity then requires further biological experiments to
confirm or reject it.

With the number of segmented neurons rising and a new interest in intersections of
three and more neuron meshes (i.e. higher order intersections), the number of possi-
ble intersections explodes exponentially. Using current workflows it is not realistically
possible to investigate higher order intersections.

1.2 Requirements
The neurobiologists require an interactive system to visualise and quantify neuron mesh
intersections in an efficient way. Their data is stored as meshes of so-called arbori-
sations, the terminal branching structures of the neurons where synapses communi-
cate with other neurons. The system must make it possible to investigate intersec-
tions/overlaps of arborisations. This must include higher order arborisation overlaps,
i.e. overlaps of three or more meshes.

Investigating arborisations for potential connectivity requires first and foremost an
uncluttered visualisation in 3D. This must be complemented by a quantification of the
overlaps, both in absolute and relative sizes of overlap volumes. The interactive tool
must be intuitively integrated with other tools (neuroMap [65], heat maps, etc.) and
thus with the neurobiologists’ current workflows.

1.3 Thesis Overview
Chapter 2 gives a brief introduction to the scientific field of neurobiology and issues
relevant to the thesis. For more information on the motivation of the thesis we refer
to Sections 2.3 and 2.4. There we give details on the data we work on and pose core
questions which our system aims to solve.

Chapter 3 ties this thesis to related works on similar topics over recent years. Chap-
ter 4 discusses design choices in general - more specific interaction techniques follow
in Chapter 7. Technical implementation challenges and their solutions are discussed
in Chapters 5 and 6. Finally we discuss the user experience in Chapter 8 and offer
conclusions in Chapter 9.

2



CHAPTER 2
Introduction to Neural Circuitry

This chapter gives a brief introduction to the field of neural circuitry and the scientists’
workflows. Building on this, we present three core questions. The goal of this thesis is
to support the scientists at the IMP [29] in Vienna in answering those questions.

2.1 Circuit Neuroscience
To articulate the contribution of this thesis it is first necessary to present the challenges
in the field of circuit neuroscience. Neuroscience is the study of the nervous system.
More specifically, circuit neuroscience tries to understand the computational function
of a neural circuit, as well as linking this function with the circuit micro-structure [77].
Over a century ago scientists identified the neuron as the functional unit of the brain.
The scientific consensus at the moment is to represent the brain as a complex network
with functionally connected units at several hierarchical levels of organisation (columns,
areas) [67]. Circuit neuroscience investigates biological circuits by reverse-engineer-
ing them, to comprehend their structure and logic, and ultimately their computational
algorithms [77]. Olsen and Wilson [53] define this ’circuit-cracking’ with the following
five points: ’To completely solve a neural circuit would require

1. describing a behaviour whose neural circuit mechanisms we seek to understand,

2. identifying which neurons are involved,

3. determining what drives activity in each type of neuron and how these signals are
transformed through the circuit,

4. discovering the cellular, synaptic, and circuit mechanisms underlying these neural
transformations, and
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5. understanding why these neural transformations are useful intermediates in pro-
ducing this behaviour.’ [53]

As part of this, a ’fundamental challenge is to decipher the connectivity diagram of
neural circuits, one of the holy grails of neuroscience’ [77].

Documenting the connectome, the complete set of neural connections, in the human
brain would be the ultimate goal. Understanding every neural circuit in every species
would be impossible and pointless, however a comparison of several circuits across dif-
ferent species should help with this goal [53]. Therefore, brain networks are analysed
on different levels with different imaging techniques. Whereas the tiny brain of the
worm Caenorhabditis elegans (around 300 neurons) was completely deciphered on the
synaptic level using electron microscopy (EM), this is technically not feasible for larger
brains [34]. Recently EM data has been produced for a larval and an adult brain of
Drosophila melanogaster, but the process is slow and costly [59]. The data thus ex-
ist only for single individuals and may help to confirm findings from higher levels of
resolution. For larger brains, e.g., mice, optical techniques can provide a resolution on
a cellular level but not on a synaptic level [42]. Imaging techniques used on the hu-
man brain, such as magnetic resonance imaging (MRI), help study connectivity on even
higher levels, i.e. between brain regions [67].

Scientists use model organisms—such as Caenorhabditis elegans, fruit flies, mice,
or macaques—as research objects to eventually gain insight into neural connectivity
within the human brain. Model organisms can be quickly and cheaply bred in large
numbers and studying them raises only limited ethical concerns. They must provide
some behavioural characteristics that can be linked to neural circuits.

Caenorhabditis elegans is the first species to have its connectome completely deci-
phered. In the 1970s and 1980s researchers imaged extremely thin slices using serial
electron microscopy. This made it possible to virtually reconstruct every neuron and
find every synaptic connection between neurons [61]. With its 302 neurons, however, it
provides only limited behaviour.

2.2 Drosophila Melanogaster
The fruit fly is the main research subject of the team of neuroscientists at the IMP. Its
brain’s complexity lies between that of the simple C. elegans and the huge complexity
of a mouse brain. The fly is only 2.5 mm in length and features a brain of about 100,000
neurons with two halves and a ventral nerve cord (VNC) (Figure 2.1).

There are two major reasons why Drosophila is often chosen as model organism.
First of all the fly breeds and matures quickly. Females lay up to 400 eggs every 16 days
and the development from egg to adult takes only seven days under controlled condi-
tions. Keeping and growing a population is very cheap. Second the genetic toolbox is

4



Figure 2.1: Drosophila’s brain and ventral nerve cord (VNC). top: anatomical draw-
ing [71], bottom: a male fly’s confocal microscopy image using the GAL4/UAS system;
nc82 staining reveals brain tissue (magenta), green fluorescent protein (GFP) highlights
groups of neurons [20].
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extensive, although it is rivalled by that of the mouse. The genome has been sequenced
and well annotated. Modifying and mapping chromosomes is fairly easy. Along with
these two major reasons comes the advantage that experimentation with the fruit fly
does not raise ethical concerns.

There are many more reasons to choose this rewarding model organism when con-
ducting circuit neuroscience. Very relevant is its numerical simplicity. In comparison
the mouse brain has about 1000 times more neurons. Another feature are stereotyped
neurons, which can be located (in theory) in every fly [53]. The fruit fly is the small-
est model animal with a brain. The brain shows rudimentary consciousness, and high
abilities such as learning and memory. It perceives sound, vision, and smell and fea-
tures complex traits, some of which have clear human homologs, e.g., circadian rhythm,
sleep, drug responses, locomotion, aggressive behaviour, and longevity [63].

The fly’s similarities with humans go even further making it a viable model organism
in genetics. Evolutionary conservation of key genes and cellular mechanisms often
enables extrapolation of observations from flies to humans. There is a direct homology
between Drosophila genes and genes that affect human diseases. Of all genes known
to affect human diseases, more than 60% have Drosophila orthologs. More than 50%
of Drosophila protein sequences are similar to mammalian sequences. Because of this
evolutionary proximity, the fly can serve as a model organism to study human disorders
like alcoholism, sleep disorders, and neurodegenerative diseases. The latter includes
Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease. In each instance
genomic approaches can be used to explain disease mechanisms at the genetic level.
The large populations needed for such experiments are readily available when using
Drosophila [47].

Cracking courtship behaviour
Using the imaging technique on Drosophila as described in the next section (Sec-
tion 2.3), scientists have identified circuits related to, among others, courtship behaviour [75,
76], the olfactory system [28], visual information processing [44], and walking direc-
tion [6]. To explain the circuit cracking process in more detail we present work by
Barry Dickson [20]. Dickson and his team at the IMP have studied neural functionality
of Drosophila’s courtship behaviour.

The analysed neural mechanisms that govern courtship behaviour are adaptive and
robust, they are accessible to genetic and physiological investigation at the level of sin-
gle identifiable neurons. A fly selects specific actions on the basis of sensory input,
internal physiological states, and individual experience. Upon encountering another fly,
a male decides whether or not to court. The courtship ritual may take only a few minutes.
The male fly is able to discriminate females from males, discriminating receptive from
unreceptive females is partly learned behaviour. Depending on detected pheromones,
the fly decides to initiate courtship.
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The eligible female assesses her suitor’s quality and her own readiness to mate.
She judges the male mostly based on his courtship song and partially also on detected
pheromones. Circuits in the female brain integrate sensory input from the olfactory
system, auditory system, and reproductive tract to make her decision. The mating de-
cision as shown in Figure 2.2 is a relatively simple and genetically tractable system.
It provides an excellent model to study the brain’s decision making. The neurobiolo-
gists investigate how neural circuits process and store all this information and hereby
guide behaviour. As depicted they trace the neural pathways that mediate this complex
behaviour from sensory input to motor output. To define the neural circuits that gov-
ern male courtship behaviour they employ genetic approaches. These make it possible
to identify, characterize, and manipulate individual circuit elements. The process cul-
minates in established relationships linking cellular biochemistry, circuit function, and
behaviour [20].

The Michael Jackson Fly
Another success story of this kind of research is the work by Bidaye et al. [6] on
Drosophila walking direction. They investigated the brain’s decision making process—
specifically in the locomotor circuit—when animals choose to change walking direc-
tion. Using the powerful genetic toolkit, Bidaye et al. created a phenotype dubbed
moonwalker that walks backward instead of forward. With subsequent experiments they
identified a pair of neurons responsible for this behaviour. Promising results come from
a follow up paper that supports these findings with data from functional imaging [60].

As Mann [48] puts it, Bidaye et al.’s ’findings provide the first glimpse into how
flies control walking direction. [...] we need a better understanding of the circuitry
that controls forward walking. Answers will no doubt come from a wide variety of
approaches, including ones similar to those used by Bidaye et al., to provide cellular
resolution to complex motor outputs such as walking.’

Researching decision making in Drosophila, be it on courtship behaviour, motor
functions, or other systems, has the potential to completely solve a neural circuit. It
may reveal fundamental mechanisms of action selection [20].

Neuroanatomy
The central nervous system of Drosophila consists of the brain and the ventral nerve
cord (VNC), see Figure 2.1 as mentioned above. All images considered for this thesis
are from the brain, the VNC is out of scope. The brain is partitioned into 43 neuropils.
These are functional brain regions ’that synergistically [sic] cooperate to achieve com-
putational tasks’ [30], i.e. they are associated with performing or being relevant for
specific tasks. This may make it useful to determine the exact location of an anatomical
connection between neurons. Each neuron is made up of a single cell body and one

8



Figure 2.3: Two renderings of the standard brain in grey. Top: A confocal microscopy
image using the GAL4 system, the green fluorescent protein highlights specific neurons.
Bottom: A single segmented neuron in red. Cell bodies (a) are clearly visible as bright
green dots (top), and as a large red structure (bottom), representing the average over
multiple images of the same neuron. Synapses are located at the arborisations (c). The
neuron is completed by the projection (b) that connects all its arborisations to the cell
body. These thin nerve fibres are barely visible under the microscope. Both images
were created with BrainGazer [11]. 9



or more arborisations, connected by a projection (compare Figure 2.3). The cell body
contains the cell’s nucleus. Synapses are located at arborisations, the terminal branch-
ings of nerve fibres where communication with other neurons may occur. In Drosophila
and most other invertebrates the cell body is located at the outer regions of the brain.
The arborisations inside it are linked to their cell bodies via thin nerve fibres, the pro-
jections. Synapses, i.e. connections between two overlapping arborisations, can only
exists between pre- and post-synaptic terminals [7]. Pre-synaptic terminals (also called
axon terminals, synaptic boutons, or terminal boutons) are the transmitting/sending part
of a synapse. The opposite part belonging to a different neuron can receive a signal,
this is the post-synaptic terminal (also called post-synaptic receptor). Our data however
does not discriminate pre- and post-synaptic arbours.

Potential Connectivity and Peters’ Rule
Cracking neural circuits requires us to make assumptions about connectivity. Func-
tional connectivity between neurons requires overlap of axons and dendrites, the area
where synapses are located. Shape and location of these arborisations are an important
source of specificity. For excitatory neurons the consensus states that where axons and
dendrites are sufficiently close, synaptic connections occur [23, 62, 72].

In case it is infeasible to investigate neurons down to the synaptic level due to tech-
nological and/or cost constraints, neurobiologists may employ Peters’ Rule [12,54]. The
rule makes an assertion about the anatomical strength of a connection. From the shape
and location of an overlap of arborisations, potential connectivity can be inferred. In
simple terms, Peters’ Rule states that overlap between arborisations of neurons is nec-
essary but not sufficient for direct functional connectivity. If there is no overlap there is
no connectivity at all. If there is an anatomical connection, it implies a potential con-
nectivity of a certain strength [12, 23, 62]. A high degree of overlap predicts synaptic
connectivity.

2.3 Data Acquisition and Enhancement
These processes are explained in detail in Yu et al. [76]. The following summary will
suffice to give a good understanding of the nature of the data.

The digital atlas of the fruit fly neurons was created by non-rigidly registering con-
focal images onto a common template, a standard brain. nc82 staining was used to
visualise brain tissue, providing a spatial relation for the image registration. The stan-
dard brain was generated from a carefully selected set of tissue images.

Specific neurons where labelled with the GAL4/UAS system. This biochemical
method consists of two parts. Two lines of flies are separately modified – a line is
a genetically identical group, i.e. the flies have the same genotype. The driver line

10



Figure 2.4: Top: two neurons are visualised, one in red and one in blue (image created
with BrainGazer [11]). Their arborisations produce an overlap, its exact size and form
are difficult to investigate in 3D. Bottom: a mock-up from the final design by Judith
Moosburner [50], here overlaps are visualised as flat unicolour blobs.
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receives the GAL4 gene, the responder line the UAS sequence. Their children have the
GAL4 protein activated in the targeted neurons, creating a fluorescence effect. The 3D
double channel confocal microscopy images contain brain tissue in one channel (as a
reference) and the highlighted neurons in the other channel.

The confocal microscopy is done on the dissected brain of the fruit fly. The volu-
metric image has a size of 420µm×420µm×165µm. Images were taken at 768×768
pixels with 165 slices, resulting in a resolution better than 1µm3. Although this is quite
a high resolution, synapses are still smaller than the diffraction limit. With specialized
labelling methods [77], synaptic information could be acquired to specify cells as pre-
or post-synaptic. Our digital atlas does not, however, contain such information.

After the registration of the raw images, neuronal structures were semi-automati-
cally segmented with support of the Amira software [5]. Cell body, projection, and
arborisations were segmented on single images or GAL4 averaged images. The seg-
mented neurons are stored in a relational database, along with meta data on sex, driver
and reporter line, neuron type, etc. The segmented data is available as both binary 3D
mask and surface geometry. Cell body and arborisation are separately stored as triangle
mesh data while projections are represented as centre lines with varying radii.

The database includes limited overlap information. Volumes for pairwise arborisa-
tion overlaps are calculated from the binary masks and stored in the database. Also, the
overlap’s distribution to the neuropils is calculated and stored. The data is available via
the public database BrainBase [10].

2.4 Scientific Questions
In their search for neural circuits the scientists analyse the available data in BrainBase
using different tools. Among them are BrainGazer [11] and its integrated graph visual-
isation software neuroMap [65]. These will be discussed in the next chapter.

With the available data neuroscientists can not directly explore functional connec-
tivity but potential connectivity instead. By employing Peters’ Rule the experts can
investigate overlaps of arborisations and, from their location, size, and shape, formulate
new hypotheses. The neuroscientists are interested in getting quick answers to the three
core questions

• Which groups of neurons overlap?

• Where do they overlap?

• What is the significance of the overlap?

Volumes of arborisations are measured in µm3 and so are overlaps, which are in-
tersections of arborisation meshes. The scientists, however, judge the importance of an

12



overlap not solely on absolute volumes, but on volume ratios. The essential numeric
overlap values are the ratios between the volume of the intersection and the respec-
tive volumes of the participating arborisations. According to Peters’ Rule, the largest
of these ratios, displayed in percentages, is likely to be most interesting to the user.
Supported by these ratios and extensive domain knowledge, the scientists can judge an
overlap’s significance.

Answering the three questions above becomes more and more complex as the num-
ber of arborisations contributing to an overlap grows. The idea that the combination
of a good information and interaction design with online computation of overlaps can
substantially alleviate this analytical process, provides the guideline for this thesis.
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CHAPTER 3
Related Work

After briefly touching on the rendering techniques, this chapter compares a multitude
of tools for the visualisation of connectivity. The relevant state-of-the-art methods are
summarised and followed by a short discussion of what they mean for the development
of our tool.

3.1 Rendering Techniques

Our developed methods are influenced by works from several fields. We combine sev-
eral non-photorealistic rendering (NPR) techniques to convey a Focus+Context metaphor.
These techniques meet the requirement of scientific visualisation, to communicate in-
formation efficiently, without adhering to realism [51]. In this sense, we employ silhou-
ettes and watercolour rendering. Silhouettes are commonly used for abstraction or to
improve recognition of objects in medical imaging [22,57,70] and other scientific visu-
alisations [46], while watercolour techniques are mostly reserved for artistic work. We
have carefully adapted these techniques to closely imitate the design created by Judith
Moosburner (compare Chapter 4).

For some features, such as overlap rendering, we employ A-buffers. This technique,
typically used to achieve order-independent transparency, is essential for this thesis.
Section 5.3 details the data structure and discusses the relevant related work. Chapter 6
describes how we use the A-buffer as a rendering technique and for volume computa-
tion.
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3.2 Visualisation of Neural Connectivity
There exists a wide range of tools today to visualise different aspects of neural connec-
tivity. The many diverse sources of data produce quite diverse visualisations. Many data
sources differ substantially, as there is no consensus on what data should be included
in a database [16]. Several data collections related to neurocircuit research are publicly
available. Such brain atlases exist for various species at various levels (even down to the
synaptic level) and have spawned a multitude of tools for the exploration of images and
annotated neurons [10, 15, 32, 49, 64, 71]. As circuit neuroscience is a relatively young
field, its imaging techniques for acquiring connectivity information are still improving.
These atlases may collate images of different scales, from the macro scale (connectivity
between neuropils) down to the micro scale (synapse information), some also annotate
neurons.

Atlases are essential for research and education. They illustrate and annotate organs
and bring coherency by defining a nomenclature. Flylight [32], Flybrain [64], and Fly-
base [71] provide only confocal microscopic images, but no annotated neurons. They
offer typical atlases describing the Drosophila brain and interactive navigation in their
respective databases of images and sketches.

The online portals FlyCircuit [15] and Virtual Fly Brain [49] provide access to pub-
lic databases as well. With graphically driven ontology queries, they offer a simple tool
for finding neuron overlaps in Drosophila. FlyCircuit’s static wiring diagram displays
connectivity between neuropils. Neuropils can be interactively selected to filter connec-
tions (Figure 3.1). A web service also offers a tract finding feature for neural tracts that
connect neuropils to each other.

Although FlyCircuit and Virtual Fly Brain support interactive searches for connec-
tivity, they are both limited to connectivity information between neuropils. They ex-
clusively find neurons projecting to the same neuropil and do not detect arborisation
overlap, i.e. their overlap information exists on the brain region level and is thus far
coarser than direct overlap computations.

Neuron Navigator [45] is a visual query tool that operates on one of these atlases.
It helps explore FlyCircuit in 3D for potential connectivities with an array of visual
queries (Figure 3.2). Neurons are drawn as complete tracing lines, sacrificing volumet-
ric information for an un-occluded visualisation. As spatial context the brain’s mush-
room body—made up of all neuropils—is rendered in black, optionally opaquely or
transparently.

The database BrainBase [10] provides precomputed overlap information for pair-
wise overlaps. It also offers a parallel coordinates based neuron search that queries
neuron-neuropil overlaps. Like FlyCircuit and Virtual Fly Brain, it offers 3D online
rendering of neurons on demand, allowing users a visual inspection of the results.

BrainGazer [11] operates on the data from BrainBase [10], another database like
FlyCircuit and Virtual Fly Brain. Like Neuron Navigator it provides high quality 3D
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(a)

(b)

Figure 3.1: The online portal of FlyCircuit [15] shows connections between neuropils.
The static wiring diagram (a) draws straight lines between neuropils: line colours indi-
cate functional modules, line thickness encodes the number of connections. (b) A single
neuropil has been selected. All its connections to other neuropils are drawn.
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Figure 3.2: Neuron Navigator [45] is a 3D interaction tool for FlyCircuit [15], which
includes multiple visual query options. In this image the user selects a region of interest
(small yellow box). Only neurons passing through it are rendered. They are drawn as
tracing lines to avoid occlusion.

visualisations and sophisticated spatial queries. Together with neuroMap [65], it can
be used to explore and analyse a potential connectivity between pairs of neurons. Pre-
computed volume information derived from pairwise arborisation overlaps is visualised
to help judge the significance of overlaps (Figure 3.3).

Jianu et al. [33] developed an abstract representation of axonal tracts in the human
brain (Figure 3.4). The interactive exploration system visualises tractography datasets
as two-dimensional paths. The useful colourisation of axon bundles was indeed found
by trial-and-error.

Li et al. [43] implemented a tool for the quantitative analysis of brain connectivity
(Figure 3.5). It is based on defining regions of interest (ROIs) to create connectivity
graphs. The tool differentiates functional connectivity networks and effective connec-
tivity networks and works with multi-modal neuro-imaging data. ROIs are represented
as spheres and connectivity strength between them is intuitively indicated by the thick-
ness and opacity of the edges. The resulting 3D graph structures preserve the spatial

18



(a)

(b)

Figure 3.3: BrainGazer [11] offers multiple query and visualisation tools for the explo-
ration of neurons in Drosophila. (a) Three arborisations are rendered. (b) The same data
can be investigated for overlaps using neuroMap [65]. It includes quantitative volume
information for overlaps. 19
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Figure 3.5: The tool by Li et al. [43] visualises connectivity as a 3D graph. The spheres
are regions of interest interactively defined by the user.

context.

NeuroLines [2] abstracts mouse brains at the synaptic level into a subway map.
It hierarchically visualises the connectivity between dendrites and axons. The mouse
brain data is acquired by scanning slices via electron microscopy. This analysis tool is
designed for scalability and tries to keep some spatial context, as the subway map can
preserve relative distances.

The tool UpSet [41] uses a 2D visualisation for the quantitative analysis of sets, their
intersections, and aggregates of intersections. Sets are visualised in a matrix structure. It
is very abstract and focuses on scalability. Similarly, Radial Sets [3] visualises intersec-
tions of sets in radial graphs. In general, visualising sets often necessitates visualising
their intersections. In these tools it is almost always done in 2D without preserving
spatial context [4].

A specific example for Drosophila is the previously mentioned neuroMap [65]. In
conjunction with BrainGazer it visualises intersections as 2D graphs. neuroMap pro-
vides an optional anatomical layout to keep some spatial context. Its abstract view
explores potential connectivity with a highly sophisticated encoding of pre-computed
overlap information of pairs of arborisations. Nevertheless, higher order overlaps are
difficult to detect here too, and no quantitative information is available either.

Recently a tool supporting structural connectivity analysis of a model of neuron
populations in the barrel cortex has been proposed by Dercksen et al. [19]. Here a
hypothesis on potential connectivity is derived from the distribution of pre- and post-
synaptic sites groups of neurons.
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3.3 Occlusion and Intersection in Visualisation
Our work centres around visualising intersections of objects. The major obstacle in this
regard is certainly occlusion. Various techniques tackle the problem of occlusion in
visualisation as made evident by Elmqvist and Tsigas [26].

Using their classification on our work reveals that it fits in quite well with the virtual
x-ray techniques but breaks this pattern when it comes to multiple (integrated) views.
Nevertheless techniques following this pattern provide valuable input when approaching
the problem of visualising object intersection information. Classically they employ cut-
outs or cutaways [17, 27, 74] and rely heavily on transparency to reduce occlusion [21,
25]. Visualising intersections however is not the focus of these techniques.

3.4 Discussion
Connectivity information may be presented as a connectivity matrix. Its binary or
weighted versions can be visualised as a heatmap or a graph, with or without spatial
context. When considering set intersections of higher order, these visualisations fall
short. As Dercksen et al. [19] put it, creating easily interpretable visualisations of brain
networks is non-trivial, as such a network is often a complex graph embedded in 3D.

Concerning the occlusion management discussed by Elmqvist and Tsigas [26] our
work is unique, occlusion is integral to our visualisation as we concentrate on object
intersections. Also unlike many visualisations dealing with heavy occlusion we use
(virtually) no transparency.

BrainBase [10] and BrainGazer [11] are the base of our new tool. This pairing was
obvious as our clients were already using these systems. A benefit is certainly the syn-
ergy with other tools implemented in the same system, see Section 5.1 for details. The
new visualisation could however be integrated with other tools and databases mentioned
above as well.

The current implementation of our tool may benefit in the future from linking it to a
customised version of UpSet [41] or even Radial Sets [3]. These 2D visualisations could
complement our system by providing additional views on the same data for different
purposes.

Some of the referenced tools operate on quite different data sources such as fMRI
or electron microscopy [2, 33, 43]. This makes some of their contributions not easily
adaptable to our system. Nevertheless they provide inspiration for the design and im-
plementation.

From its intention the work by Dercksen et al. [19] comes closest to ours. It also
combines 3D visualisation with quantitative and qualitative elements, but the underlying
data and therefore also the methodology differs substantially from our solution. The
visualisation in 3D of higher order overlaps is still unique to our system.
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CHAPTER 4
Information and Interaction Design

This chapter outlines the design work by Judith Moosburner [50], which laid the founda-
tion to this thesis. Judith Moosburner, a graphics designer from the Zürcher Hochschule
der Künste, worked in cooperation with biologists from the Institute of Molecular Pathol-
ogy (IMP) in Vienna to create multiple artistic design studies for the visualisation of
higher order arborisations. The work, published as a Diploma Thesis in 2011, includes
a final design proposal—the guideline of this thesis’ project.

4.1 Background
The goal of the design work was to increase and make accessible knowledge about
neural connectivity. To achieve this task the designer drew inspiration from different
fields, e.g., cartography and medical illustration, always keeping in mind and consulting
the target audience—the neurobiologists at the IMP.

Conservative hand-drawn visualisations of dendrites, namely those of Camillo Golgi
(1843-1926) and Santiago Ramón y Cajal (1852-1934), were a starting point for the
design (Figures 4.1 and 4.2). From 1920 on, initially monochromatic illustrations were
increasingly replaced by more and more colourful images, conveying more complex
content. Technical advances in microscopy replaced hand drawings by high-resolution
photographs, which were superseded by 3D images.

There already exist various ways to scientifically visualise neurons or neural con-
nectivity (see Chapter 3). The involved colouring schemes are central to these visual-
isations and are often heavily influenced by the actual appearance of neurons in light
microscopy. For example in the GAL4/UAS system (compare Section 2.3) the protein
markers produce a green fluorescence when scanning under the influence of laser light.
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The designers goal is always to create aesthetic images while conveying all necessary
information. In this sense abstraction from the real world may become desirable.

4.2 Creating the new Design
Moosburner developed the new design in a close feedback loop with the domain ex-
perts, always guided by the question ’How can colour design and interaction support
the visualisation of neuronal connectivity?’, starting from the ’classical’ visualisation
BrainGazer offers for the available data (compare Figure 2.3 and Figure 2.4). The goal
was to produce a design for a tool that would support the scientists in answering their
questions listed in Section 2.4. The focus was on optimizing perceptional aspects of the
information flow while technical considerations or limitations were not central in the
design.

The brain atlas’s data are registered onto a standard brain template made up from
brain tissue as seen in Figure 2.3. This template includes a partitioning into about
50 neuropils, serving as a spatial context. Onto this template neurons and their ar-
borisations are registered, providing a second layer of spatial context for the overlaps.
The complete brain atlas includes quantitative information on potential connectivities
and additional meta-data. The view on the brain template resembles cartographic sys-
tems [13], thus the design work takes inspiration from concepts of cartography and
information design.

Moosburner drew inspiration from multiple sources to tackle the design problem.
In the context of insights from perception and colour theory [31, 36], interaction de-
sign [66] and cartography [1,13], current 3D depictions of neurons (compare Chapter 3)
suffer from substantial flaws. They are plagued by too much detail, visual clutter, ad-
verse colouring, and missing representation of connectivity. To overcome these issues,
the new design was based on the main principles of information design [8, 37]:

• Reduction to decimate dispensable information and to confine information to its
essentials, especially focusing on already existing visualisations and the represen-
tation of the brain.

• Abstraction to make connections visible, to identify clusters and core areas, and
to depict connectivity in order to highlight and rank it faster and more easily.

• Information scaling through interactivity to reduce the amount of information
while still providing access to details on demand.

In a first step these topics have been approached by the designer through several
artistic studies. From figurative to more and more abstract representations (compare
Figures 4.3 to 4.7), the design process culminates in the final design discussed in the
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Figure 4.3: Design study as presented in the thesis by Moosburner [50].
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Figure 4.4: Design study as presented in the thesis by Moosburner [50].
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Figure 4.5: Various design studies as presented in the thesis by Moosburner [50].
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Figure 4.6: Various design studies as presented in the thesis by Moosburner [50].
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Figure 4.7: Various design studies as presented in the thesis by Moosburner [50].
31



following sections (compare Figures 4.8 and 4.9). Here it is made clear where along the
way these main principles were applied. For an in depth look at the interactivity aspect
of the information scaling we refer to Chapter 7.

4.3 Object, Shape, and Colour Design

The brain tissue, its neuropils, and neurons provide hierarchical layers of context for
representations of potential connectivity information. Together, these support finding
answers to the scientific core questions (Section 2.4), in particular the first and second
one.

The available geometric representations of neuron, neuropil, and brain surface have
been directly extracted from the 3D images (compare Section 2.3) resulting in seem-
ingly well-textured object surfaces. The first layer of spatial context—the brain and
its neuropils—has its surfaces widely reduced or even omitted. As global context,
Moosburner chose to represent the brain tissue with an abstraction of the brain surface,
coloured in a neutral white to grey tone with high transparency and enhancing silhou-
ettes (compare Figures 4.8b and 4.9). Neuropils are depicted similarly transparent but
with a slight blue hue to establish differentiation (compare Figure 4.10a).

Neurons provide immediate context for overlaps, which are considered to be the
central information for the users. The surfaces of the arborisations are particularly het-
erogeneous and structured, they were reduced as much as possible to prevent distraction
by unnecessary details. Instead slight texturing is used to obtain a lightweight effect of
organic appearance of neurons. Projections appear as thin lines and cell body locations
as spheres. For neurons, Moosburner chose a colouring scheme from the cold colour
spectrum of brown / green / blue—colours which are mostly observed as neutral (com-
pare Figure 4.8b). The blueish neuropil colour was chosen from the unsaturated, pale
end of the spectrum (compare Figure 4.10a).

Regions of overlap are defined by intersecting arborisations and are highlighted—in
opposition to the contextual information—in an eye catching manner. As the detection
of higher order overlaps is in the centre of interest, a gradient colouring system with
intense colours was designed, supporting the detection of significant overlaps (compare
Section 2.4, specifically the third core question). It colours pairwise overlaps in yellow,
triple ones in orange, and higher order overlaps in red and dark red (compare Figure 4.9).
The bright, vivid colours have a high signalling effect and can be easily recognised and
identified by their contrast to the rest of the system. Such gradient colouring schemes
are used in cartography to depict growing values (e.g. temperature) and are discussed
at length in the more general field of information visualisation (e.g. for the use in heat
maps).
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(a)

(b)

Figure 4.8: The mock-ups are part of the final design proposal by Moosburner [50].
Neurons stored in the atlas as segmented 3D data are depicted with very reduced fea-
tures (a). The highest layer of spatial context, the brain tissue, is reduced to a silhou-
ette (b). 33



Figure 4.9: This mock-up is part of the final design proposal by Moosburner [50]. Neu-
rons are coloured in blue, green, and brown tones. In contrast, overlaps and their ab-
stracting glyphs are drawn in bright, vivid colours. The colour scheme encodes the order
of overlap.
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4.4 Connectivity and Interaction Design
Using abstraction, information representation in interactive systems can be properly
scaled [66]. Most important in depicting potential connectivity is the information on
the existence and significance of overlaps. Visualising all overlap regions at once in 3D
would lead to a completely cluttered view. To avoid this, the existence of an overlap
is initially only displayed using a glyph in the form of a small dot. Its colour indicates
the order of overlap (compare the overlap colour scheme, Figure 4.9). The glyphs are
easily recognizable within the contoured brain and are placed roughly at the position of
the overlap. Clusters and core areas can thus be easily recognised.

The glyphs not only encode overlap information, they are also the central interac-
tion element. Hovering over a glyph immediately visualises its corresponding overlap
using the overlap colour scheme. Clicking the glyph makes this a permanent selection,
revealing the overlap in the same way as the hover action. Multiple overlaps may be
selected at a time.

Two types of menus offer quantitative information on overlaps: the tree menu and a
tooltip menu (see Figures 4.10b and 4.11). The quantitative overlap information consists
of the list of participating arborisations and their relative volumes, i.e. how much of the
arborisation’s volume is part of the overlap, as well as the distribution to neuropils. The
tree menu is located on the left side of the screen, it provides a complete and structured
view on the quantitative data, including a perspicuous summary of all overlaps for each
arborisation. The menu uses the same colour scheme and symbols as the 3D rendering.
The menus are linked to the 3D visualisation, i.e. mouse interactions like selecting
overlaps are synchronised.

Investigating the quantitative data combined with interaction in 3D helps find an-
swers to all core questions (compare Section 2.4). The interaction design is more com-
prehensively described in Chapter 7 using the practical examples developed during the
implementation.
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(a)

(b)

Figure 4.10: The mock-ups are part of the final design proposal by Moosburner [50].
Neuropils are drawn on-demand. They are very reduced with slight transparency to
provide some additional spatial context (a). The tooltip menu provides quantitative data
for overlaps on mouse over (b).

36



Fi
gu

re
4.

11
:

T
hi

s
m

oc
k-

up
is

pa
rt

of
th

e
fin

al
de

si
gn

pr
op

os
al

by
M

oo
sb

ur
ne

r[
50

].
T

he
tr

ee
m

en
u

of
fe

rs
a

co
m

pl
et

e
lis

to
f

al
lf

ou
nd

ov
er

la
ps

.
O

ve
rl

ap
s

ar
e

in
iti

al
ly

ab
st

ra
ct

ed
as

gl
yp

hs
,t

he
n

se
le

ct
iv

el
y

sh
ow

n
in

th
ei

r
fu

ll
ex

te
nt

(h
er

e
a

pa
ir

w
is

e
ov

er
la

p
in

ye
llo

w
).

37





CHAPTER 5
Implementation

The implementation follows closely the design proposed in Chapter 4 but additionally
takes into account the need for interactive performance. This requirement is reflected
in the choice of highly efficient computational methods for volume calculation and in-
teractive visualisations. The implementation was integrated into a larger system which
already offered a multitude of tools for investigating the digital atlas. This chapter gives
an overview of the implemented pipeline and specific technologies used to achieve an
interactive system.

To summarise, a simple implementation of an A-buffer requires OpenGL 4.3, and
due to the integration into the BrainGazer framework we use C++ with GLSL and com-
pute shaders. Qt 4 helped make most of the graphical user interface elements.

5.1 Existing Environment: BrainGazer
The tool was implemented in the existing framework offered by Brain* [11] (pronounce
’brain star’). This framework was started in 2008 in collaboration with the Institute of
Molecular Pathology to support their research workflows. Brain* does this via multiple
tools working together in unison. The three most integral parts of the framework are

• BrainBase, the database managing the complete brain atlas created during the
Drosophila research by the IMP,

• BrainBaseWeb, a web interface to perform complex searches on the data, and,

• BrainGazer, a desktop application providing multiple tools for advanced search
and filter strategies on the atlas and their visualisation.
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Figure 5.1: View on BrainGazer with only one viewport (our overlap visualisation)
open. The workspace (left) handles all loaded arborisations, stores queries, and links
multiple viewports together. An html view on BrainBaseWeb (top right) can be used to
load data into the workspace. All opened viewports can then share the loaded data.
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The desktop application BrainGazer provided the environment for implementing the
new tool. BrainGazer accesses the database by including a view on BrainBaseWeb. This
brings with it simple operations such as searching for arborisations of a specific name
and many more complex search operations on the database.

The software is plug-in based with a central workspace. With it, the user can, dur-
ing runtime, adjust the system by creating new viewports showing different tools. All
viewports/tools interact with each other through this central workspace. It also controls
loaded work elements such as neuron arborisations or GAL4 staining images.

Some of the tools, which the workspace of BrainGazer loads as separate viewports,
are

• A 3D rendering viewport that combines triangle mesh rendering (e.g. for seg-
mented arborisations) and volume rendering (mainly for staining images),

• A heatmap for pairwise arborisation overlaps,

• neuroMap, a graphical representation of pairwise arborisation overlaps.

These are the major tools relevant to use cases related to potential overlap infor-
mation. A heatmap can quickly visualise a huge number of pairwise overlaps (com-
pare Figure 5.2). The sophisticated graphing tool neuroMap (compare Section 3.2 and
Figure 3.3) visualises potential connectivity stored in our database BrainBase but it is
limited to pairwise overlaps as well.

All these tools are linked across the workspace (compare Figure 5.1). This way
they share loaded work elements. Among others, the workspace can load arborisa-
tions, cell bodies, neuropils, and whole neurons from the database. The workspace link
also communicates selection information between viewports. The cross-selection—the
propagation of selections to all other tools—is thoroughly discussed in Section 7.3. The
concept of a central workspace makes a modular plug-in based architecture possible.
Our new overlap visualisation tool was implemented as a plug-in. As such it benefits
from the complete Brain* architecture:

• We could reuse a large amount of the infrastructure, such as querying the database
and loading data to the GPU.

• Users already familiar with BrainGazer, mainly our partners at the IMP, do not
have to learn a completely new system.

• The tight integration with existing tools creates synergies. This is made apparent,
e.g., by the cross-selection.
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Figure 5.2: A heatmap available in BrainGazer visualises a large number of pairwise
overlaps. Each pair of arborisations corresponds to two ratios, mapped to a rainbow
colour scale from blue (0%) to red (100%). Per Peters’ Rule (compare Sections 2.2
and 2.4) the larger one is likely to be the more interesting one.

5.2 Computational Pipeline
Figure 5.3 depicts a high level view on our processing pipeline. Once the neurons are
loaded into the application’s workspace, their arborisations undergo a volume estima-
tion process. It calculates volumes of arborisations and neuropils and all arborisation
overlaps (compare Section 6.1 for a detailed description). This information is stored
and later used to feed the menus containing the quantitative information. Data loading
and calculation take a few seconds, after which the rendering process starts. This entails
rendering of context information such as brain surface, neuropils, and neurons, as well
as drawing arborisation overlaps and rendering their representing glyphs (Section 6.3
discusses rendering techniques in detail). Loading additional arborisations initiates the
volume estimation for the newly introduced overlaps.
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Figure 5.4 provides a view on the tool through the visualisation pipeline. It is com-
pletely integrated into the BrainGazer framework. This makes it easy to use in combi-
nation with other tools such as neuroMap [65].

5.3 Basic Data Structure: A-buffer
As previously mentioned, the database makes pre-calculated volumes available for ar-
borisations and pairwise arborisation overlaps. This data even extends to a list of in-
tersecting neuropils for each overlap—albeit without volume data—, giving important
information on the spatial distribution of an overlap. However the database lacks any
volumetric or other information on higher order overlaps, meaning overlaps between
three arborisations or more. Pre-computing all these values and storing them is sim-
ply infeasible. For n intersecting arborisations the number of possible distinct sets of
overlap is 2n− n− 1. For three arborisation meshes, there can be three pairwise over-
laps and one additional three-overlap (i.e. where all three meshes overlap). Once we
start looking at higher order overlaps, this number of potential distinct overlaps rises
drastically. Five meshes can produce up to 26 distinct overlaps. Even if we cap the
pre-computation at four-overlaps, a database of only 10000 arborisations results in up
to 9999+∑

9998
1 +∑

9997
1 = 99970003 distinct overlaps.

Kalkofen et al. [35] use a G-Buffer data structure by Saito and Takahashi [58]
to composite multiple renderings, including illustrative renderings. Both our central
method of calculating volumes and the rendering of connectivity information use the
more sophisticated A-buffer data structure. First described by Carpenter [14], an A-
buffer can be used for order independent transparency or any kind of complex com-
positing. As an example of a system in a related field we mention Nowke et al. [52].
They use A-buffers for alpha-blending to visualise large-scale neural activity data of the
Macaque monkey.

A-buffer Variations

Both for rendering connectivity information in 3D and for calculating intersection vol-
umes we use a convenient A-buffer. An A-buffer is a list of fragments per pixel [14].
There exist variations of A-buffer implementations on the GPU tailored to specific ap-
plications [18, 39, 73].

Commonly this data structure is used for sorting fragments by depth to achieve true
order independent transparency on modern graphics hardware. We however use it for
constructive solid geometry (CSG) operations (intersections) and volume calculations.
When rendering to the A-buffer, objects in view-space are projected to a 2.5D repre-
sentation. All this projection’s depth information is held in global shared memory on
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the GPU and stored in linked lists. Each pixel points to its own linked list. In a second
render step the fragments are sorted by depth.

The sorted lists are then used to calculate volumes and render arborisation overlaps,
coloured according to the design (see Chapter 4 for details on the design decisions).
The list iteration during rendering can be interpreted as ray casting. Once a linked list
has been sorted by depth, all operations on it correspond to ray traversals from front to
back.

To find a suitable implementation of an A-buffer, we first looked at the work of
Crassin [18]. Based on this code we implemented paged per-pixel linked lists, a vari-
ant that improves cache coherency compared to naïve implementations. Storing more
than one datum per pixel to create a linked list requires a locking mechanism. Just
like Crassin we solve this pixel synchronisation with atomic operations available on
OpenGL 4. This gives us one semaphore per pixel to ensure sequential write oper-
ations per pixel. Such pixel synchronisation exists natively on the Haswell architec-
ture (4th Generation Intel Core Processor) and above as a shader extension for DirectX
11. We opted for the software implementation in OpenGL 4 because it is used in
BrainGazer, our framework of choice.

A simple A-buffer
An A-buffer must provide functions to read and write to the per-pixel linked lists. In
each pass an A-buffer can only be used for one of these operations since we cannot
rely on memory fences on the GPU. We use multiple A-buffers for storing mesh data,
including depth values, as described in the following chapter. Compare Figure 6.2 for
the illustration of an A-buffer.

Our specific OpenGL implementation uses four separate shader storage buffers to
create a single A-Buffer. The first two are screen-size buffers. One stores links to the
heads of the per-pixel linked lists, the other counts of stored elements/fragments. The
other two buffers store the fragment data (e.g., depth, mesh identifier, ...) and a link to
the next fragment. Their allocation size has to be big enough for all fragments. The
easiest way to ensure that all fragments fit is to use an atomic counter or query buffer
to count the fragments. If a shader pass exceeds the limit of the allocation (i.e. there is
more geometry in the scene than anticipated) this pass fails. In this case the pass will be
repeated immediately after a reallocation: the exact number of required fragments can
be queried from the failed pass. The two buffers that store fragment data and links are
resized with a conservative safety margin. All these buffers may be written to or read
from in fragment (or compute) shaders but never both. They may also be downloaded
to the CPU.

Saving a single fragment is quite a complex endeavour. When it first arrives in
the fragment shader, we try to get a semaphore lock on this specific screen coordinate.
This is necessary for pixel synchronisation and requires an atomic operation available in
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OpenGL 4. Then the shader, again atomically, acquires the next free spot in the storage
buffers and stores this fragment and a link to its address. Finally the shader releases the
semaphore lock.
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CHAPTER 6
Volume Estimation and Rendering

This chapter describes algorithms employed by the system and their integration into
pipelines/workflows. The focus lies on explaining a novel method used for computing
intersections of brain regions. Following the section on this Volume Estimation is a
brief section that shows how the user interface represents these computed values. The
last section discusses various rendering techniques, which, combined, create the 3D
visualisation. These rendering techniques are chosen to achieve an approximation to
the design (compare Chapter 4) while still maintaining interactive performance.

6.1 Volume Estimation
The Volume Estimation method is an integral part of the system. It is essential for the vi-
sualisation to include volume information on arborisation overlaps. The design displays
relative volume information as percentages to help the scientists judge the importance
of overlaps, i.e. by applying Peters’ Rule (compare Sections 2.2 and 2.4).

The system calculates relative volumes for arborisation intersections, as well as for
their intersections with neuropils on-the-fly. This section, however, solely explains the
volume calculation of arborisation meshes and their intersections, the extension to in-
clude neuropil meshes is trivial.

As previously described in the pipeline overview (Figure 5.3), the system locates
overlaps, can abstract them with glyphs, and eventually calculates the intersection vol-
umes. To do this Volume Estimation, first all arborisations in question are rendered to
the A-buffer. These segmented neuronal structures are available as mesh information.
Although the neuronal structures exist as segmentation masks as well, we decided on
calculating intersection volumes from their mesh representation. Firstly, we already
have the mesh information on the GPU since we use it for the viewport rendering, and
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secondly, available memory limits the number of segmentation masks we can load at any
one time. In a typical use case, we expect about ten meshes to be loaded at one time,
although we performed the accuracy tests mentioned in this chapter with 50 arborisation
meshes.

Following the mesh rendering pass most subsequent calculations run on the GPU to
take advantage of its parallelism. Mesh depth information stored in the A-buffer suffices
to determine regions of overlap and even to estimate volumes. Our Volume Estimation
method can be briefly explained with a comparison to ray casting. The A-Buffer pro-
vides us with all relevant depth values per pixel. For each pixel it stores a linked list of
depth value and mesh identifier pairs. In the simplest case of a convex mesh this is one
value for a front face and one value for a back face, compare Figure 6.3 for other cases.
Similarly to ray casting, the GPU iterates all per pixel depth values front to back and
computes their differences. The sum of these depth differences approximate the mesh
volume. As mentioned in Section 5.3 we also use these depth values to compute inter-
section volumes of meshes. Our method is fast and accurate in calculating volumes of
meshes and their intersections. It is flexible in application and could be easily extended
to the other CSG operations, union and difference, should the use case so require. These
operations are performed by the shader with the A-buffer data. For these intersections
no separate meshes need to be calculated, saving the time to do CSG calculations on
the CPU or pre-build a CSG tree. The meshes can be arbitrarily complex, but they must
bound a finite volume, i.e. they must not have holes.

We refer to the volume calculation itself as an estimation because it does not produce
exact results. Summing signed volumes of polyhedrons would produce exact results but
it requires all the mesh faces to be either clockwise or counter-clockwise in orientation.
Our method, however, works irrespective of face orientations and normal information.

The following two subsections describe in detail how the A-buffer is used to calcu-
late mesh volumes. The last subsection presents evaluation results on the accuracy of
the method.

Volume Estimation in Orthographic Projection Space
We use the depth samples stored in the A-Buffer to compute depth differences. In
orthographic projection space these values are sampled over a regular grid, compare
Figure 6.2 for a schematic representation. Figure 6.1 shows a flow diagram of the Vol-
ume Estimation pipeline. It consists of at least three shader passes. In the first pass
(render meshes), meshes are rendered and stored to A-buffers. In this example we use
two separate A-Buffers to store depth values from arborisations and neuropils respec-
tively. In a second pass (sort by depth), the values are sorted by depth into two further
A-Buffers. At this point the figure shows one optional shader pass (find sets) that deter-
mines all combinations of arborisations that intersect. In the third required pass (depth
differences), we compute per-pixel depth differences from the mesh depths. Optionally
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Figure 6.1: A flow diagram of the Volume Estimation process on the GPU. Shader
passes from top to bottom: (a) the necessary arborisation and neuropil meshes are ren-
dered to their respective A-buffers in a single pass; (b) in a separate pass the A-buffers
are sorted into new A-buffers; (c) this pass iterates the sorted depth values to determine
all existing arborisation overlap combinations; (d) the depth differences are computed
for all meshes, and optionally for all existing mesh overlap combinations.
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Figure 6.2: The mesh (green sphere) in orthogonal frustum has been rasterised to the
A-buffer. The A-buffer stores the depths of the entry and exit point (red dots). The depth
values of a single pixel as depicted here, are stored in their own linked list, along with a
mesh identifier ID. The order of the depth values (red dots) is not guaranteed.

this pass can use the output from the find sets pass to also compute depth differences
for intersection volumes. All of these differences are stored to a final A-Buffer. This
buffer, along with the optional A-Buffer from the find sets pass, is then downloaded to
the CPU where the sum of the depth differences, the estimated volume, is calculated.
The addition is done on the CPU because it does not profit from the parallelism of the
GPU. In theory it could be performed by reduce operations on the GPU. However, this
would require many additional A-Buffers which would undo any potential performance
gain of a GPU reduce operation compared to the sequential addition on the CPU.

These steps of the Volume Estimation pipeline are described in more detail in the
following paragraphs. Section 6.3 explains how some of these shaders are used to create
a rendering of the mesh overlaps.

Storing mesh data in the A-buffer. Meshes are rendered to the A-buffer using
an orthogonal projection matrix, which is fitted to the scene, in this case the brain’s
bounding box. In the first shader pass, render meshes, they are projected along the z-
axis. The z-values are stored in the A-buffer along with mesh identifiers. The detailed
pseudo code in Algorithm 6.1 shows how a value is stored in a paged A-Buffer. We
do not cull back faces as we need all depth information later on. The orthographic
projection to the A-buffer samples the meshes over a regular grid, in our case the A-
buffer has a size of 512 by 512 pixels to accommodate the entire bounding box (compare
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Figure 6.3: The rasterisation of the mesh (green object) in an orthogonal frustum is
easily understood in a schematic 2D view. The A-buffer stores the depths of the entry
and exit point (red dots). Concave objects result in multiple depth values per pixel.
When sorted by depth the values with even indices d2i are entry points, those with odd
indices are exit points d2i+1.

Figure 6.2 with a schematic grid of 4 by 4 pixels). As shown below in the Subsection
Accuracy and the accompanying Table 6.1, smaller and thus faster A-buffers are also
sufficient.

Each pixel indexes its own linked list of mesh information. A simple convex mesh
would create two entries in each pixel it occupies: one data point for the front face and
one for the back face. A data point records the depth (the linear view-space depth, in our
case of the orthogonal projection this is a z-value in model space) of where the mesh is
located in 3D-space and, of course, a mesh identifier to match the depth values to their
arborisation or neuropil. The GPU does not guarantee the order in which the polygons
are rendered, the depth values may or may not be sorted at this point. Compare Figure
6.2 for a simple overview of the projection and the organisation as linked lists in the
A-buffer, and Figure 6.3 for an illustration for non-convex meshes.

Sorting the A-buffer. Before doing any further operations on the depth information
we must sort the lists. We perform a separate shader pass for sorting the lists into a
newly allocated A-Buffer. Instead we could sort the lists every time they are read by
a shader, without saving the sorted list itself. We have not noticed any difference in
performance for these two approaches. Vasilakis and Fudos [73] use either insertion
sort or shell sort depending on list length, in our use cases insertion sort turned out to
be efficient enough.

Calculating depth differences from the A-buffer. At this stage of our pipeline
all meshes have been projected to the A-buffer and are therefore available in global
GPU memory. The A-buffer stores the sorted mesh depths, with these we now calculate
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Algorithm 6.1: Pseudo code of the shader that stores a value to an A-Buffer.
This section may be executed for each pixel multiple times. The semaphore,
implemented with atomic operations, ensures that only one instance per pixel
writes to its linked list. An atomic add safeguards the allocation of new pages
in the shared memory. For allocating space this version uses pages that fit four
fragments. We have tested the code with and without paging and have not
experienced any performance changes.

Data: One value val (e.g. consisting of depth value and mesh identifier),
writeable A-Buffer, screen position XY.

Result: The value has been stored to the A-Buffer.
1 pageIndex← NULL
2 numFragmentsInCurrentPage←NULL
// get a pointer to the shared pool:

3 while True do
4 if AcquireSemaphore (XY) then

// get last page index for this pixel:
5 pageIndex←GetLastPageIndex (XY)
6 numFragments←GetFragmentCount(XY)

// our pages store up to four values
7 numFragmentsInCurrentPage←numFragments mod 4
8 if numFragmentsInCurrentPage == 0 then

// allocate a new page:
9 newPageIndex←AtomicAddSharedPageCounter (4)

// save the link to the previous page:
10 SetLinkSharedPool (newPageIndex,pageIndex)

// save the new page as current for this
pixel:

11 SetLastPageIndex (XY,newPageIndex)
12 pageIndex←newPageIndex
13 end
14 SetFragmentCount (XY,numFragments+1)
15 ReleaseSemaphore (XY)
16 break
17 end
18 end
// save the new fragment in the shared pool:

19 SetValueSharedPool (pageIndex+numFragmentsInCurrentPage, val)
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differences. In a pixel, a single mesh has the depth of d = d1−d0, where d0 is the first
depth value in the A-buffer and d1 is the second one. More complex, non-convex meshes
may have a multiple of two depth entries in a single pixel (compare Figure 6.3 for an
illustration of this naming schema). After sorting, these n depth values are alternating
entry d2i and exit d2i+1 points to the mesh interior. For every entry point there is exactly
one exit point, thus n is even. The depth dpix of a mesh in a single pixel of the A-buffer
is

dpix =
n−1

∑
i=0

d2i+1−
n−1

∑
i=0

d2i (6.1)

For each mesh, these depth differences are written to a float buffer on the GPU
(compare shader pseudo code in Algorithm 6.2) and later summed up by the CPU. When
scaled by the area of a pixel, the sum of all depth differences is a representation of the
mesh volume. With widthbb, heightbb the width and height of the brain’s bounding
box, which was used to create the frustum, and widthab, heightab the A-buffer’s sizes in
pixels, the final estimated mesh volume is

Vorthographic =
widthbb ·heightbb

widthab ·heightab
∑dpix (6.2)

Algorithm 6.2: Pseudo code of the compute shader that calculates
depth differences for all meshes, this code is executed once for each
pixel. A fragment is a pair of depth and mesh identifier.

Data: A-Buffer A with sorted depth values and mesh identifiers, empty
Buffer B.

Result: Depth differences for each mesh in Buffer B.
// accumulated depth difference of each mesh:

1 B← []
// Inside/Outside array initialised to zeros:

2 inout← [0]
3 fragments←GetFragments(A)
4 foreach meshId, depth of fragments do
5 inout[meshId]← inout[meshId]+1
6 if inout[meshId] is odd then
7 entryDepth←depth
8 end
9 else

10 B[meshId]← B[meshId]+depth−entryDepth
11 end
12 end
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Figure 6.4: To compute the intersection volume, the meshes (cyan and blue) are ren-
dered to an A-Buffer in an orthogonal frustum. The A-buffer stores pairs of depth and
the mesh identifier. To determine which depth value constitutes an entry (or exit) point
to the intersection volume, we need additional information. Previously we stated that
the values (sorted by depth) with even indices d2i are entry points, those with odd in-
dices are exit points d2i+1. In the case of intersections we must keep track of meshes
along the tracing ray. Once we step inside all (here two) meshes, we record d0 (red dot)
as the first entry point. When we leave one of the meshes, we record d1 as an exit value.

Intersecting meshes in the A-buffer. This Volume Estimation can not only be done
for a single mesh, but also for intersections of multiple meshes. The computation of such
volumes on the GPU on demand is the keystone of this thesis. The sorted linked lists
of the A-Buffer let us achieve this goal quite easily. We need to find in the A-buffer the
correct depth values bounding an intersection. Sorted by depth value, the data pairs of
mesh identifier and depth make this set operation a simple matter of iterating the linked
list at each pixel. The next paragraphs make this clear for an intersection of two meshes,
the extension to three or more is trivial. In the same manner the Volume Estimation may
be extended to other set operations, thus it can be used for all CSG operations directly
on the GPU.
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Algorithm 6.3: Pseudo code of the compute shader that calculates
depth differences for a mesh intersection, this code is executed once
for each pixel. A fragment is a pair of depth and mesh identifier. This
example extends the simple pseudo code in Algorithm 6.2

Data: A-Buffer A with sorted depth values and mesh identifiers, the
mesh combination OverlapSet to intersect, empty Buffer B.

Result: Depth differences for the mesh intersection in Buffer B.
// accumulated depth difference:

1 B← 0
// Inside/Outside array initialised to zeros:

2 inout← [0]
3 order←number of meshes in OverlapSet
// Inside/Outside counter:

4 i← 0
5 fragments←GetFragments(A)
6 foreach meshId, depth of fragments do
7 if meshId in OverlapSet then
8 inout[meshId]← inout[meshId]+1
9 if inout[meshId] is odd then

10 i← i+1
11 if i == order then
12 entryDepth←depth
13 end
14 end
15 else
16 if i == order then
17 B← B+depth−entryDepth
18 end
19 i← i−1
20 end
21 end
22 end

Calculating depth differences (and subsequently volumes) of an intersection requires
knowledge about which depth value represents an entry or exit to the intersection inte-
rior. For a pairwise overlap, i.e. an intersection of two meshes A and B, the shader needs
only their two respective mesh identifiers as they are stored in the A-buffer alongside
the depth values. Figure 6.4 gives a 2-dimensional schematic overview of a pairwise
overlap.

Algorithm 6.3 shows pseudo code for the intersection of an arbitrary number of
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meshes, a set of their identifiers must be provided as input OverlapSet. While iterating
the values of the A-buffer (sorted by depth), the shader continuously updates a list of
meshes that have been entered. If, at a point, both meshes A and B have been entered,
the depth value must be an entry point for the intersection. This way entry and exit
points are determined and eventually, as described above for a single mesh, the depth
differences are written to a buffer to be later summed up by the CPU.

Determining the input for this Algorithm 6.3, i.e. the set of identifiers describing
the intersection (input OverlapSet), is a separate step. This find sets pass illustrated
in Figure 6.1 (and, for the rendering pipeline, in Figure 6.7) creates a collection of all
possible sets of mesh intersections, excluding mesh combinations that do not intersect.
The pass writes this information to a separate A-Buffer. Both of these figures refer to
such an overlap set buffer. It stores a dense encoding of the available intersections in
each linked list. An intersection between three meshes with identifiers 23, 24, and 25
would be encoded as 3−23−24−25, and thus taking up four entries in the linked list.
Each overlap set is stored as a list of integers: first the order of the overlap, then a list of
mesh identifiers.

The following Section 6.3 also refers to the collection of all these overlap sets with
an A-Buffer, in respect to the rendering pipeline. Here, this buffer serves to decide on
the CPU, which mesh intersections actually exist. This way the shader pass calculating
the depth differences is not done for mesh combinations that do not produce any overlap.
Once this Volume Estimation is concluded for all meshes and their overlaps, the relative
volumes are calculated. These are later presented in the user interface.

Volume Estimation in Perspective Projection Space

It is important to note that the fitted orthogonal projection is not necessary to calculate
volumes. With a modest loss of accuracy we can instead use a perspective projection.
This makes it possible to calculate volumes directly from the A-buffer we use for ren-
dering overlaps and glyphs (compare Section 6.3).

The only notable change is the calculation of the depth differences. Instead of a
depth difference we must calculate a difference of pyramid volumes in each pixel. Fig-
ure 6.5 gives a schematic 2D view of this computation. From each fragment’s depth
in the A-buffer, we must create a pyramid, which extends from the eye to the pixel in
projection space. Its height is the (linear) depth of the fragment in view space (d). Its
rectangular base (width a and height b) is the representation of the pixel in projection
space. Vpyramid describes the volume of the pyramid.

Vpyramid =
d ·a ·b

3
(6.3)
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Figure 6.5: The rasterisation of the mesh (blue) with a perspective projection in a
schematic 2D view. The A-buffer stores the depths of the entry and exit point (red dots).
The volume can be computed from two pyramids. They extend from the camera to the
depth values. The smaller one’s height is d0. Its base is the representation of the screen
pixel in projection space, a rectangle a0 ·b0 (represented in the image by the dashed grey
line crossing d0). The volume computed in this pixel is Vpixel = d1a1b1/3−d0a0b0/3 .
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With two pyramids (constructed from an entry point d0 with a0 and b0, and an exit
point d1 with a1 and b1) we can compute the volume in a pixel.

Vpixel =
d1 ·a1 ·b1

3
− d0 ·a0 ·b0

3
(6.4)

In our specific use case we care about relative volumes. Thus we do not need to
address calculating a and b. We have instead tested a simplified version of this Volume
Estimation by ignoring constants. Since a and b are directly proportional to d, we
replace them in the equation. We omit the division by 3, resulting in the per-pixel
volume difference Vrelative.

Vrelative = d1
3−d0

3 ≡Vpixel (6.5)

A drawback of this calculation is of course the loss of absolute values. A quick way
to find a conversion ratio back to the actual volume is to do this Volume Estimation on
a mesh of known volume. We implemented this Volume Estimation to make use of the
same A-buffer that was employed for rendering overlaps and glyphs, but eventually de-
cided against this approach. It shows major disadvantages compared to the orthographic
version. The frustum is not perfectly fitted to the relevant meshes (to the brain’s bound-
ing box), which reduces accuracy. Even more problematic, the frustum can completely
or partially miss meshes, because it is controlled by the user via zooming and pan-
ning actions. Completely omitted meshes would not pose a problem, partially omitted
meshes would distort the Volume Estimation. The perspective projection’s frustum also
does not provide the same resolution everywhere. The closer we get to the far plane, the
more accuracy we lose in all dimensions (depth, width, and height).

The only advantage it has over the orthographic version is that it saves a few shader
passes, including the render pass. Essentially it operates on the same pipeline described
in Section 6.3 (compare Figure 6.7). Because of the major disadvantages we decided
against using the perspective version. Creating additional A-buffers for the orthographic
projection comes at a low cost.

Accuracy
The Volume Estimation employed here leads to percentages of integer precision, de-
scribing the relation of two meshes A and B (or more) to their intersection. The value
of 100% for A means that it lies entirely inside the investigated overlap, a value of 1%
means A is barely part of the overlap—very likely making this an overlap of low im-
portance for the neurobiologist. 0% cannot occur, since meshes not part of the specific
overlap are not even considered; thus the smallest values are denoted by ’< 1%’.

Calculating the per-pixel depths dpix (or per-pixel volumes) as well as summing
them up to Vorthographic introduces a negligible numerical error. We have tested the Vol-
ume Estimation’s accuracy using 50 arborisation meshes (randomly selected from the
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A-buffer Size [pixel] r̄ sr t1[ms] t2[ms] t3[ms] t4[ms]
64x64 0.988697 0.077697 16 5 2 1
128x128 1.003902 0.028103 16 17 4 1
256x256 1.003049 0.008036 21 58 14 6
512x512 0.999934 0.003300 26 73 44 24

Table 6.1: The table gives Volume Estimation results of 50 arborisation meshes, of
all together over 8 million triangles. The first column shows the resolution of the A-
buffer. r̄ and sr denote mean and variance of the estimation’s divergence from an exact
calculation. The timings are approximate upper limits on an NVIDIA GeForce GTX
670 and an Intel Core i7 920. t1: allocate A-buffer memory and render meshes, t2:
calculate depth differences on GPU, t3: download buffer of depth differences to CPU,
t4: sum on CPU.

database, all together over 8 million triangles), rendered to an A-buffer of resolution 512
by 512 pixels. The resolution of the A-buffer controls the number of depth differences
that a particular mesh is divided into. Generally, more samples in x and y direction
make for a more exact estimation.

As ground truth, we calculate the triangle mesh volumes Vgroundtruth using signed
volumes of tetrahedra [78]. Dividing each Vgroundtruth by the corresponding Vorthographic
results in 50 ratios, which we expect to be 1 each. The test leads to a mean r̄ ≈ 0.999934
and a variance sr ≈ 0.003300. The method of estimating volumes proves by far suffi-
cient for our use case: to quickly compute volumes with integer accuracy. Compare
Table 6.1, listing timings and accuracy of different A-buffer resolutions.

We also tested the Volume Estimation in perspective projection space. The method
is sufficiently accurate for our needs. The following values have been acquired with an
A-buffer of 512 by 512 pixels and the same 50 arborisations. Although r̄perspective ≈
43.813915 cannot be compared to the values in Table 6.1, srperspective ≈ 0.142829 is
comparable. Because our use case requires only relative volumes of integer precision,
this variance is sufficiently low. The loss of absolute values is irrelevant. We eventu-
ally decided against this perspective method, however, as mentioned in the preceding
subsection.

6.2 Quantitative Information
The volumes computed by the Volume Estimation are, as shown above, quite precise.
This estimation suffices to give us integer exact volumes in µm3 with Equation 6.2. In
the user interface, however, we only want to show relative volumes.

In two different user interfaces, we show the exact same quantitative information
relating to a single overlap. Figure 6.6 shows an example of the tree view and the
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(a) tree view (b) tooltip

Figure 6.6: (a) The tree view lists each arborisation by name, here we see only
L_aSP1_arbMB_A_1. To add some spatial context, next to the name is an icon show-
ing the arborisation’s approximate location in the brain. Below, we list all overlaps
this arborisation participates in. They are sorted into categories by their order/colour.
Here it shows three: The first category (yellow, i.e. pairwise overlaps) contains five
different overlaps. The second category (orange, i.e. three-overlaps) shows six distinct
overlaps. Both of these are collapsed. The last category (four-overlaps) is expanded
to display quantitative information on a single four-overlap, separated into arborisation
and neuropil info. (b) The tooltip shows the same quantitative information.

62



tooltip menu with a four-overlap (an intersection of four meshes). Both views separate
the quantitative information into two blocks. The example shows four arborisations in
the upper block, and five neuropils in the lower block.

The percentage next to an arborisation denotes how much of it is participating in
the overlap in question. These are the relevant values that the experienced user needs
to render a judgement on the importance of the overlap (via Peters’ Rule, compare
Section 2.2). Next to each percentage, a small circles shows the same value. These
graphics makes it easy to quickly see outliers and compare percentages.

The amount next to a neuropil shows how much of the overlap is inside of this
neuropil. These numbers add up to 100% and provide additional spatial information to
users familiar with the neuropils.

6.3 Rendering Techniques
The analysis of higher order overlaps in 3D requires smart abstraction choices to avoid
occlusion. Our design (see Chapter 4) describes separate elements, which are eventually
combined to a final rendering. Figure 5.3 offers a high level summary of this pipeline.
The silhouette and neuropil meshes directly contribute to this final image. Rendering
of arborisations, overlaps, and glyphs requires the use of the A-buffer. The graph in
Figure 6.7 abstracts our customised rendering pipeline: Up to five textures are created
and composited to the canvas.

The following subsections describe the selected rendering techniques that achieve
an approximation to the design while maintaining interactive performance. The focus
of the first subsection lies on the visualisation of overlaps, the remaining subsections
summarise other techniques used in the rendering viewport. All of these fit together in
the pipeline overview depicted in Figure 5.3.

Connectivity Information
The essential information we need to encode in the 3D rendering is the location and
size of overlaps. The abstraction choice of using glyphs makes it easy to visualise many
overlaps at a time. Loading multiple intersecting arborisations creates an exponential
number of overlaps, each abstracted by its own glyph. Here follows a description of this
part of the rendering pipeline, as summarised in Figure 6.7. Please compare its similar-
ities with the Volume Estimation pipeline as described in the preceding Section 6.1 and
summarised in Figure 6.1. The pipelines share some shader code.

Rendering meshes to the A-buffer. First, as in the Volume Estimation, we employ
an A-buffer to store all mesh data. The viewport should support 3D interaction, so
the rendering step uses an appropriate perspective projection matrix and model view
matrices, as opposed to the Volume Estimation.
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Figure 6.7: This simplified graph summarises the rendering pipeline that produces the
3D visualisation. Arborisations are rendered from a sorted A-buffer, while silhouette
and transparent neuropils are rendered directly. Selected overlaps are rendered directly
from A-buffer 2, which stores the overlap sets. The same buffer is downloaded from
the GPU to compute glyph positions. Then the glyphs are rendered and all textures are
composited to the canvas.
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Sorting the A-buffer. Second, analogous to the Volume Estimation, the A-buffer
must be sorted by depth, again using a simple pass of insertion sort.

Creating and downloading the overlap set buffer. In the next render pass, after the
A-buffer has been filled with all arborisation meshes, we render its contents to a separate
A-buffer. Section 6.1 also refers to such an A-Buffer that stores overlap sets. Compare
A-Buffer 2 in Figure 6.7 and A-Buffer 5 in Figure 6.1. In this step we combine meshes
to overlaps. The resulting A-Buffer stores in each pixel a list of overlaps that exist there.
An overlap is encoded as a list of integers, namely the participating meshes’ identifiers
preceded by the order of the overlap. This dense encoding would refer to an intersection
of, e.g., three meshes with identifiers 23, 24, and 25 as 3−23−24−25 (an overlap of
order three). In the Volume Estimation (compare Section 6.1) this step determines which
overlaps exist. We use it there to limit the calculation of depth differences to only those
intersections that actually bound a volume. Here, we recreate this step in perspective
projection space. Then we download this overlap set buffer to the CPU to later use it to
calculate glyph positions.

Rendering Overlaps. To render an overlap our shader needs only the overlap set
buffer and the identifiers of the meshes constituting the overlap. For each pixel, it
searches the A-buffer’s linked list to discover if the overlap in question exists. Except
for a subtle transparency, the overlaps receive no special shading. The colouring is done
according to the design, the colour indicates the order of the overlap. Note that overlaps
of higher order are rendered on-top, since they occupy less area (compare Figure 6.8a).

Mesh intersections could be rendered with flat or Gouraud shading, using the normal
information from the original meshes. Since the design does require this, the normal
information is not retained in the A-buffer. The overlaps intentionally appear in a single
colour.

Abstracting Overlaps as Glyphs. Concerning the glyphs it was necessary to find a
suitable way to position them in screen space. Two approaches with distinct advantages
and disadvantages have been implemented.

Glyph Positioning in 2D. The first attempt to positioning follows a few simple re-
quirements. Glyphs ought to appear on top of the overlap they represent, while keeping
their distance to other glyphs, to remain discriminable from each other. Additionally,
there should be some sort of position coherence when navigating the rendering by zoom
or rotation.

We find glyph positions by calculating a centre point in 2D for each overlap. As
described above, the overlap set A-Buffer is downloaded from the GPU. We map this
A-Buffer to a 2D grid, i.e. we reduce each of the linked lists to a single overlap–the
one with the highest order. This mirrors the overlap rendering (compare Figure 6.8a):
we have multiple distinct areas of overlap. To each area, we apply a city block distance
transform to determine the centre point. This way each overlap’s glyph is set far away
from its area’s edge.
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(a) glyph positioning in 2D

(b) glyph positioning in 3D

Figure 6.8: (a) Four glyphs are selected, the glyphs are positioned in 2D in the centre of
the largest continuous 2D area of its overlap. Note that the glyphs are positioned on top
of their respective overlaps, away from other overlaps. (b) The glyphs are positioned in
3D. Those that occupy approximately the same 3D position are stacked vertically.
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Glyph Positioning in 3D. The second attempt to positioning follows the simple
directive that the visualisation must be stable when rotating and panning. To achieve
this it was necessary to calculate 3D positions for glyphs. Instead of using the overlap
set A-Buffer of the rendering pipeline (Figure 6.7), which has to be downloaded for
every frame for the 2D positioning, we use data from the Volume Estimation. The
buffers there (compare A-buffer 5 overlap sets in Figure 6.1) are of lower resolution
than the screen space but sufficient to provide 3D coordinates for all overlaps.

The 3D coordinates for an overlap should be close to its centre of mass (centroid).
We compute this only once for each overlap: Since we already have the A-Buffer from
the Volume Estimation which provides depth values for an overlap, we use it here to
estimate x, y, and z of the centroid. For a single overlap, looking at all the linked lists
sequentially, we find the (x,y) position corresponding to its highest depth difference.
Here, we take the depth value of the entry point and add half this depth difference. This
value stands in as (z) for the 3D position, the point is most likely inside of the overlap
and a good estimation of the centroid.

More than one overlap may return the same or almost the same 3D position. These
are mainly overlaps directly related to each other: A four-overlap (the intersection of
four meshes) may have a very similar centroid as the three three-overlaps created from
subsets of its four meshes. By overlaying a 3D grid all glyphs that are very close are
clustered together. The grid is quite coarse (about 25 buckets in each dimension), the
clustering is a simple bucketing. The 3D positions in normalised device coordinates
are then on the CPU transformed to their screen space position. The glyphs in a single
bucket are visualised stacked vertically (compare Figure 6.8b). The top-most glyph in
this stack is always the one of highest order at this grid position. It is drawn at its
computed 3D position, while the others are drawn beneath in screen space.

Rendering Glyphs. After computing glyph positions with either approach (2D or
3D), they are rendered at their computed positions and composited over all other textures
on the canvas. Their colours refer to the order of the respective overlap. The glyphs
are rendered with some transparency (approximately 0.7 opacity in the centre, with an
opaque border), which makes them visible when unavoidable occlusions occur. The
glyphs of selected overlaps are indicated by a surrounding black circle.

Choosing a Glyph Positioning. While the 2D positioning produces beautiful results
for static images, which may be used to publish findings, it also has its drawbacks.
The major disadvantage of the 2D positioning is certainly the temporal incoherence
when rotating the scene. Another disadvantage is overlapping glyphs, especially where
overlaps of order four or more exist. This approach does not scale well with very high
order overlaps (intersections of four or more meshes).

When rotating the view of the brain to explore the overlaps in more detail, glyphs
will jump erratically from one location to another one. This highly distracting behaviour
results from calculating centroids in 2D screen space instead of 3D view space. To al-
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leviate this problem, we interpolate glyph positions between frames. When the user
changes the camera view, the glyphs are not repositioned at their computed 2D position
immediately. Instead they lag behind slightly. Within 600ms of the last camera move-
ment they reach their calculated positions. Over this time their movement is decelerated
by a cubic Hermite interpolation.

The 3D positioning does not suffer these disadvantages. Instead the stacked layout
may require user manipulation of the viewport to clarify where exactly a glyph belongs
to. This glyph layout can be overloaded visually just like the 2D positioning if too many
overlaps occur, i.e. this glyph layout also does not scale to very high order overlaps. It
does, however, perform better in this respect and works fine with overlaps of order five
and often six. This problem is however not anticipated with a standard use case, which
rarely exceeds order four.

With the stacked layout we also tried collapsing stacks to a single big glyph. This
approach was quickly abandoned however as it hides vital information and is not intu-
itive.

Silhouette Shading
To understand the information in the rendering, a spatial context is required. The design
asks for a silhouette of the fruit fly brain used as backdrop to the rendering. In similar
tools, this spatial context may be provided by a foggy or transparent [45] rendering of
the brain.

The silhouettes of the brain regions are calculated by applying a Sobel filter on a
depth buffer, as suggested by Saito and Takahashi [58]: We render a simplified mesh
of the brain template, on which all neuronal data has been registered, to a texture. This
texture stores only the depth values of the rendering, which we the apply the Sobel filter
to. The filter response is used to create a silhouette ranging from dark to light grey, with
non-continuous transitions between three grey values. The method achieves real-time
performance and closely resembles the initial design (compare Chapter 4).

Neuron and Arborisation Rendering
The colouring style and texture chosen for the arborisations resemble watercolour im-
ages (compare the colour design in Section 4.3). Looking for an interactive technique
that avoids the shower door effect, we found a technique implemented by Bousseau
et al. [9] very useful. In this paper they assembled multiple techniques to create a very
convincing watercolour style. Their pipeline includes effects to imitate the paper for wa-
tercolour images, and a few different effects to simulate the way watercolour disperses
on such a paper: e.g., edge darkening, pigment dispersion, etc.

Out of all the effects they describe, we chose two: the low frequency turbulent flow
and the high frequency pigment dispersion. Both of these add some irregularity to the
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Figure 6.9: Highlighting an arborisation via a menu results in an abstracted rendering
of the complete neuron create spatial context and make it easy for a user to recognise its
distinct structure. The image shows one large green arborisation that is not highlighted.
A second arborisation is drawn slightly darker, almost grey, because it is highlighted.
Note the glyph that indicates an existing two-overlap between these arborisations. Due
to this arborisation highlighting, its complete neuron is rendered in an abstract way:
Multiple lines emerge from it, these are all projections of this neuron. At the end of
these, note a large dot, this is an abstract representation of the neuron’s cell body. In this
instance the projection connecting the cell body and its arborisation is drawn four times
because our database contains four slightly different instances of this neuron.
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colouring of our arborisations to imitate real water colouring. This results in a rendering
with limited depth and structure information. As intended, the arborisations look flat and
unobtrusive to keep the visual focus on the overlaps (compare Figure 6.9).

Arborisations are rendered from a sorted A-buffer. To realise the described water-
colour effects the A-buffer must store, in addition to mesh identifiers and depths, three
float values for the model space vertex positions. Then, a shader samples a Perlin noise
texture to apply both of these colour irregularities. By using model space coordinates
to sample the noise textures, the camera may be rotated without creating the so-called
shower door effect.

A single arborisation at a time can be highlighted in the viewport, thus rendering
it a shade darker to make it stand out. To create more spatial context for a highlighted
arborisation, its complete neuron is drawn in an abstract way (see Figure 6.9): All its
projections are drawn with a constant diameter, and its cell body is rendered, abstracted
as a large dot. The dot is placed in the centre of the cell body bounding box.

Neuropil Rendering
The brain of Drosophila melanogaster is divided into 51 brain regions, called neuropils.
Overlaps between arborisations happen inside one or more neuropils. The silhouette we
draw is an abstraction of the outer shell of the entire brain, the union of all 51 neuropils.
We draw our neuropils with a blueish hue, their rendering comes close the intended
design (compare Figure 6.10 and Figure 4.10a).

One of the rendering passes is dedicated to creating a neuropil rendering, which is
composited to the final image. Compare Figure 5.3 for a simple illustration of the com-
position. Via the menus neuropils can be selected to trigger rendering in the viewport.
They are the only feature to use a high transparency. In the design, we intentionally
used transparency sparsely: Glyphs and context menus have an opacity slightly lower
than one, but the only feature to use very low opacity (here we use the value 0.2) is the
neuropil rendering. The rendering is done in a separate pass and contributes to the final
compositing (compare Figure 6.7). Note that the rendering uses mesh normal informa-
tion to create a 3-dimensional look, as opposed to the arborisations’ flat look.
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Figure 6.10: Selecting neuropils via the menu triggers their rendering. Neuropil ren-
dering is intentionally the only feature in the system that uses a large amount of trans-
parency. They are rendered with this blueish colour and use the mesh normal informa-
tion to achieve a 3-dimensional impression, as opposed to the arborisations. 71





CHAPTER 7
Interaction

The carefully designed interaction elements work in unison with the 3D visualisation
where essential information is embedded in the form of glyphs. This chapter describes
our design choices concerning interaction, both in the 3D visualisation and in the linked
menus. For a video of the implemented interactivity, the interested reader can look up
the supplemental materials published with the CGF paper [69].

The first section summarises the capabilities of the 3D viewport. Then follows a long
section on glyph interactions. Glyphs are the central interaction element, the section
details mouse-over and selection behaviour. We explain in detail the interaction options
offered by the two types of menus, the tree menu and the tooltip menu. Both of these
provide quantitative information not directly conveyed in the 3D visualisation.

The third section details selection of neuronal structures. It discusses the interac-
tive linking with other tools in the BrainGazer framework. The fourth and last section
explains how we filter overlaps that the user deems unimportant.

Design choices and their realisations are discussed in Chapters 4 and 6 respectively.
The interaction design choices concerning selection of multiple neuronal structures are
discussed in this chapter. The tool follows the primary interaction concept of linked
views/multiple integrated views. These are all centred around glyph interaction. The
glyphs abstract overlaps as discussed in Section 4.4. They are also used to blend in
overlaps in 3D or show quantitative information as a tooltip, directly integrated in the
viewport.

7.1 Exploration in 3D
Navigation in 3D must work with interactive frame rates for a visualisation described by
the design. The viewport offers this interactive exploration in 3D of arborisations and
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their overlaps. Neuronal structures can be loaded (e.g., by drag-and-drop) and investi-
gated in detail: the view can be zoomed, panned and rotated fully by traditional mouse
interaction.

7.2 Glyph Interaction
The glyphs not only encode overlap information, they are also the central interaction
element. The glyphs must offer direct and immediate interaction. On interaction, a
glyph must display its overlap, and show quantitative information on demand. Glyph
interaction must be linked with other views on the same data.

The following three subsections detail how the glyph interaction works with the
three distinct views we implemented: the 3D visualisation, the tooltip menu, and the
tree menu. Compare the design chapter, specifically Section 4.4 for an explanation of
glyphs and these three views.

3D Visualisation
The integration of the interaction into the glyphs makes it possible to gain valuable in-
sights inside the 3D visualisation itself. Frequent switching between different views on
the data becomes unnecessary. The number of existing overlaps is immediately observ-
able as well as their approximate locations, promptly giving indicators for two of the
three scientific questions (compare Section 2.4).

As discussed in previously in Section 6.3, the glyphs move with the objects when
we change the camera position, to always stay on top of their respective overlaps. An
overlap is immediately displayed when the user simply moves the mouse on top of the
corresponding glyph (compare Figure 7.1a). The overlap can be selected by left-clicking
the glyph, this renders the glyph with the pronounced surrounding black circle and
shows the overlap (compare Figure 7.1b). These two interactions (mouse-over shows
the overlap, left-click adds it to the selection to keep it visible) are intuitive when the
user gets immediate visual feedback. Because of the real-time performance, the link
between glyph and overlap becomes obvious.

Tooltip Menu
Hovering with the mouse over a glyph opens an interactive tooltip menu (compare Fig-
ure 7.1), which provides in-depth information on the overlap. For a single overlap this
information answers which neurons are participating. It also gives quantitative infor-
mation to render a judgement on the significance of the overlap (compare scientific
questions in Section 2.4).
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(a) glyph mouse-over

(b) arborisation highlight

Figure 7.1: (a) The tooltip menu pops up, when the user hovers a glyph for a second.
(b) The user moves the mouse across the arborisation R_aDT2_arbMB_A_1 (21% of it
participate in this overlap) in the tooltip menu. This interaction immediately highlights
the arborisation. Moving the mouse away from a tooltip entry removes the highlight.
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Figure 7.2: Continuation of the figure on the preceding page: The user continues moving
the mouse across the tooltip menu. Here, we hover over the neuropil T1_L_MIMPr
(85% of the overlap are located inside it). This interaction immediately triggers its
rendering. Moving the mouse away from a tooltip entry removes the rendering again.

The on-demand integration of the tooltip into the viewport is a straight-forward im-
plementation of an overview-plus-detail interaction concept, which is used virtually ev-
erywhere when dealing with some complexity.
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Figure 7.4: The tree menu allows some mouse interaction with glyphs. Here, we move
the mouse over a glyph in the tree menu, the 3D visualisation immediately renders
the corresponding overlap. Analogous to the tooltip menu, this mouse-over behaviour
works with the listed arborisations and neuropils. Also, a left click on a glyph here
selects the overlap, in the same way as clicking a glyph in the 3D visualisation does.

Tree Menu

The tree menu lists, for each arborisation, all existing overlaps. It can be expanded and
collapsed by left-clicking glyphs. The glyphs in the tree menu appear in the same shape
and shade as the corresponding glyphs in the 3D visualisation.

Figures 7.3 and 7.4 illustrate glyph interaction in the tree menu. Once the tree is
expanded, the glyph interaction works similar to the glyph interaction in 3D: a mouse-
over shows the overlap immediately, a left-click selects the overlap. This mouse-over
highlight and selection action is linked to the 3D visualisation, i.e. when a user selects an
overlap, both corresponding glyphs in the 3D viewport and in the tree menu are rendered
with the distinctive black surrounding circle to indicate a selection. This consistency of
the glyph interaction in the tree menu and in the 3D visualisation helps to make the
interface intuitive.
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7.3 Selection of Neuronal Structures
An integral part of this tool and the BrainGazer framework (see Section 5.1) is the se-
lection interaction. Users typically select multiple neuronal structures to take advantage
of linked views, i.e. the selection of a structure in one tool is automatically carried over
to other tools in the framework. This includes other visualisation tools such as neu-
roMap (compare Section 3.2 and Figure 3.3), 3D rendering viewports, slice rendering
viewports, and heatmaps. It also includes the BrainGazer framework’s workspace tool,
which manages data loading and communicates selection information across all other
tools. With many different views on the same data, the user gains a deeper insight to the
data.

This section details how our tool handles the selection of neuronal structures. The
initial design (see Chapter 4) does not exhaustively cover how the selection system
should work. With some trial-and-error and constructive feedback from biologists, we
implemented the following modes of selection.

Selection of Neuropils
Selected neuropils are rendered in the 3D visualisation to give additional spatial context.
The selection and de-selection of neuropils is only possible via the tree menu. The
tree menu displays the volumetric data and offers buttons to toggle neuropil rendering
permanently on or off (see the small eye icons in Figure 7.4 next to each neuropil entry).
While the tooltip menu offers the option to highlight a neuropil (compare Figure 7.2), it
does not give the option to select it to make this rendering permanent. This option was
intentionally omitted from the tooltip to keep it uncluttered.

Selection of Arborisations
The tree menu gives the option to select one or more arborisations. The user can left-
click an arborisation’s name or its icon (see Figure 7.3a). The 3D viewport visualises se-
lected arborisations in the same way as highlighted arborisations: The complete neuron
is rendered, to give more spatial context (compare Figure 6.9). The selection of arbori-
sations is communicated to other tools in the BrainGazer framework bi-directionally via
the workspace tool.

Selection of Overlaps
The workspace tool in the BrainGazer framework limits the selection of overlaps to a
single overlap. The way the selection of a pairwise overlap is communicated to other
tools, is by selecting the two participating arborisations. Other tools can then inter-
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pret this as an overlap selection. Because of this selection logic, it is not possible to
communicate the selection of two or more overlaps to other tools in the framework.

In our tool, however, the selection of multiple overlaps is certainly possible, and
necessary, e.g., to inspect and compare them in 3D. As discussed, overlaps can be se-
lected by clicking glyphs in the 3D visualisation or in the tree menu. In both views
selected glyphs are drawn with an enclosing black circle, all selected overlaps are ren-
dered. Clicking such a marked glyph deselects it, a mouse click on some whitespace in
the 3D visualisation drops the whole selection at once.

7.4 Filtering
During the evaluation process (see Chapter 8) we received plenty of feedback from users
experienced in the field of neurobiology. One crucial request pertains to the so-called
unimportant overlaps. As per the definition of Peters’ Rule (compare Section 2.2), over-
laps that are small in absolute or relative (to their arborisations) size are not important.

Even extremely small overlaps produce glyphs. In a practical use case with about
ten arborisations, this can already lead to a clutterd view in the 3D visualisation. We
implemented four filter options (compare Figure 7.5). Overlaps, which match one (or
more) of these, are completely removed from the interface:

1. The first filter matches highest relative volume. If the highest percentage (for
the participating arborisations) is below the lower threshold (or above the upper
threshold), it matches. For instance, a lower threshold of 5% filters overlaps that
do not have any arborisation which participates with > 5%.

2. Another filter matches the lowest relative volume. It works analogous to the first
filter, but instead of checking the highest percentage for participating arborisa-
tions, it checks the lowest percentage. For instance, a lower threshold of 5%
filters all overlaps that include an arborisation which participates only with≤ 5%.

3. The third threshold filter tests absolute volume of an overlap. It also offers a lower
and an upper bound, but the values the user sets here are in µm3, not in percent.
Any overlaps not within the set bounds are filtered out.

4. The last filter does not target the so-called unimportant overlaps. It gives the
option to filter all overlaps based on their order. If a user is not interested in,
e.g., overlaps of order two at all, they can left-click the yellow glyph in the filter
interface to cross it out. This action removes all pairwise overlaps from the user
interfaces.

This filtering vastly improves the scalability of the whole interface regarding the
number of loaded arborisations. A reasonable default setting for ’highest relative vol-
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Figure 7.5: These filters remove unimportant glyphs from the visualisation. The user
may define upper and lower thresholds to remove what they consider unimportant over-
laps. The filter menu to the very right acts as a legend for the glyphs (pairwise overlaps
are yellow, three-overlaps orange, etc.). Each glyph icon there may be toggled on or off
to filter all glyphs of this colour/order. The first filter (highest relative volume) has its
lower threshold set to 5% – our default value which, according to experts, removes most
so-called unimportant overlaps.

ume’ (lower threshold at 5%) already combats most of the clutter that experts criticised
during the feedback sessions. The figures we use to show glyph positioning in Sec-
tion 6.3 demonstrate this very well: Figure 6.8a was made without any filtering and
shows glyphs for all 26 overlaps in the area. Figure 6.8b shows only 11 glyphs, because
the default filter identified 15 unimportant overlaps.
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CHAPTER 8
Evaluation

We performed a quantitative and qualitative evaluation of the software to gain insight
into its usability and usefulness by assessing effectivity, efficiency, and user satisfaction.
The following sections cover the evaluation process and the discussion of its results.

8.1 Evaluation Setup
The evaluation was performed in one-on-one interviews with a small group of test per-
sons. The interviews were guided by tasks that the users had to perform.

Test Persons We limited the number of test users to ten to be able to perform in-
tensive user feedback sessions. Based on their background knowledge, we considered
five persons experts and five persons non-experts. Two of the five experts were highly
experienced post-docs with strong background in neurocircuit research. Three expert
users had a bioimage informatics and visualisation background and decent knowledge
on workflows related to neurocircuit research. Non-expert users had no background
on neurocircuit research, but varying experience with user interfaces and 3D tools in
general. Both user groups gave useful feedback.

Test Setup Tests were performed in front of a computer in our lab running the sys-
tem. All test persons received a brief introduction into the test setup and—if necessary—
the application background of the tools. During the test previously defined scenes were
loaded into the system to provide unified starting points for all users. The users could
freely interact with the system and were guided through the test by a set of tasks and
questions. On occasions they received hints on how to proceed. For test persons that
were not able to come to our lab in person, we provided remote access to an installation
of our system on a GPU instance of Amazon’s Elastic Cloud. This allowed interviewer
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and test person to observe and interact with the system while performing the interview
via telephone.

8.2 Quantitative Evaluation
Following the test, we asked the users to fill out the User Experience Questionnaire [38],
a catalogue of 26 questions developed by a group of usability experts to quantitatively
measure user experience in a simple and immediate way. While evaluating the results,
however, we learned that this questionnaire does not work well with very few test per-
sons. Due to the low number of test persons we believe these results to be, although very
favourable, of low reliability and thus skip them in this evaluation. It should be men-
tioned that given the resources for testing the software at a large scale, this evaluation
method would likely prove useful.

8.3 Qualitative Evaluation
Testing was split into two tasks with an optional prior introduction to the system for
novices. These unspecific tasks let the interviewees explore the system freely:

1. Investigate a pairwise overlap.

2. Investigate multiple overlaps, including higher order overlaps.

Both task were set up by the interviewer, with arborisations pre-loaded into the
workspace. The users were instructed to try out the user interface on their own. Dur-
ing the evaluation and afterwards, the interviewer asked detailed questions on the user
interface and overall questions about perspicuity and efficiency. For non-expert users
we did not explain the domain extensively. Instead, we briefly stated they were to look
at overlaps between meshes inside the brain. Few of the non-experts required a short
introduction prior to the testing, consisting of explanations regarding the basic concepts
that the biologists investigate.

We followed the think-aloud method [40] to capture thoughts and feeling of the test
persons while they interacted with the system. On agreement by the test person the
interview was recorded for later transcription.

8.4 User Feedback
The accumulated feedback from the interviews boils down to a few important issues
summarised by the following four captions. The section following this one discusses
the more vital issues raised here.
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Connectivity Exploration As expert users stated, analysis of overlaps is commonly
done by looking at 2D slices and/or pre-calculated intersection volume data derived
from 3D segmentation masks. Their unanimous impression is that our tool accelerates
both finding new overlaps and analysing them. One expert made it clear that the pos-
sibility to investigate higher order overlaps in detail for the first time may spawn new
research questions in the future.

Visual Design and Colour Scheme The colour scheme and overall visual design
was highly praised by the users. According to most users, the focus and context visuali-
sation realised by the reduced representations of brain, neuropils, and neurons supports
perfectly the search for higher order overlaps.

One expert user criticised the colouring of arborisations as too faint but especially
liked arborisation highlighting. This highlighting includes blending in the correspond-
ing neuron’s cell body and connecting projection(s). As such it was appreciated by the
expert users. All non-experts requested an explanation for this unexpected additional
context of a highlight action.

Most test persons agree that the colour scheme for glyphs is intuitive. All but one
non-expert users understood the colour coding after investigating glyphs for some time
on their own.

Interaction Interacting with glyphs was considered intuitive by all users. Three
expert users were irritated by erratic movements of glyphs when rotating the view. Of
those, one addressed glyphs that occlude each other. This happens where very small
overlaps cluster. The same small overlaps are not immediately discernible in the render-
ing viewport when selecting them in the tree menu, as one non-expert user mentioned.
Three expert users want this solved by filtering out unimportant overlaps altogether,
e.g., by manually selecting a percentage threshold. Two more experts would like to fil-
ter by order of overlap. Note that this feedback prompted our implementation of filters,
compare Section 7.4.

Both the tree menu and the tooltip menu were considered overall to be perspicuous.
One non-expert did not find them intuitive at all and recommends opening the tooltip
menu like a context menu by right clicking the mouse. Another non-expert wants the
tooltip to open on left clicks. Other than that the users intuitively used the tooltip as
intended. Some users from both groups would like the process of expanding and col-
lapsing in the tree menu to be guided by arrows. One expert user and, as expected, most
non-experts are confused by the percentages listed in the menus.

Selection Model Experts welcomed the selection of overlaps across different tools.
Non-experts, some of whom do not have any knowledge of those other tools, assumed
that biologists would appreciate the functionality. The users liked that the tree menu
and viewport are linked and consistent in using the same glyph symbols to represent
overlaps.

The users quickly adjusted to the selection and de-selection process, despite different
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expectations of some. This includes the selection of multiple overlaps via the menu or
viewport.

One non-expert assumed multiple overlap selection would work by pressing the con-
trol button while clicking. One expert did not like that selecting more than one overlap
at once was even possible. These two users criticised that cross-selection with other
tools is only possible with one overlap at a time, as this is inconsistent with multiple
overlap selection inside our tool.

8.5 Discussion
In conclusion, the qualitative evaluation was very positive. All users with intimate
knowledge of different common workflows report that our tool speeds up and improves
the analysis of higher overlaps in comparison. The quantitative evaluation supports this
claim of efficiency although we refrain from publishing this unreliable data (compare
Section 8.2). The positive feedback is specially valuable coming from two users who
are experts in the domain of neurocircuitry. They use different workflows in their daily
life and see a clear benefit in using the proposed tool. One such workflow, as described
by one of the test persons, is to manually scan through slices of rendered arborisations.
In these slices overlaps of arborisations are outlined. In combination with quantita-
tive data—available for pairwise overlaps only—this workflow is very limited and time
consuming.

Another field of improvement, revealed by the evaluation, concerns the glyph move-
ment when changing the camera view. Sometimes, the glyphs appear to erratically
jump in between frames. Prompted by this feedback, we improved this issue in two
ways. First, the 3D positioning for glyphs (see Section 6.3) drastically reduced the er-
ratic movement, compared to the 2D positioning. The second beneficial measure we
took is the introduction of a default setting for the overlap filters. The removed unim-
portant glyphs can not distract with their movement. Nevertheless, temporal coherence
with glyph positioning will have to be addressed in the future.

The selection model has some inconsistencies, especially with respect to the cross-
selection. So far we have no perfect logic approach to solve the cross-selection across
many views. Using the control key to enable the selection of multiple items (overlaps,
arborisations, etc.), as realised in a multitude of other tools, may be a good approach.
Any new selection model must be very clear how different types of selections are han-
dled across multiple tools. At the least, it has to:

1. Clearly differentiate types of selected objects (arborisations, neuropils, complete
neurons, overlaps, etc.).

2. Allow or disallow the selection of these different types of objects in a transparent
way.
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3. Allow or disallow the selection of multiple objects, and even multiple overlaps, in
a transparent way.

4. Be consistent across all tools and, where it cannot, be transparent about tool limi-
tations. The user must be informed if the selection mapping between tools is not
1:1.

Our selection model works well. Especially regarding point four, however, it still
lacks clarity. To satisfy all these points, we will have to extend the selection model built
into the BrainGazer framework.

The fact that even non-experts were able to use the tool with barely any guidance,
shows the intuitiveness of the tool. This is especially appreciated with respect to the
glyph colour scheme and glyph interaction, which were quickly picked up on. The
experts believe the tool delivers: It helps to find answers to the scientific core questions
(Section 2.4). They praised the convenience and speed of the tool, compared to previous
workflows. The overall positive feedback gave hints on further small improvements and
minor missing features, some of which are discussed in the following chapter. One
example is a colour picker for arborisations. We decided against adding this minor
feature however, because it would break the carefully crafted colour scheme.
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CHAPTER 9
Conclusion and Future Work

9.1 Conclusion

The thesis presented the implementation of a new design by Judith Moosburner [50].
Both the visualisation and the on-demand volume computation enable the analysis of
overlaps of arbitrary order.

The qualitative evaluation suggests that the described tool is both effective and ef-
ficient in aiding the required tasks. Our benchmarks (compare Table 6.1) show that
the algorithm is sufficiently accurate and fast to fulfil the required computations. The
design was developed in collaboration with domain experts. In the course of the evalua-
tion, the neuroscientists confirmed that the visualisation and interaction features achieve
the tool’s aim: to support hypothesis formulation by answering the core questions (Sec-
tion 2.4). With the on-demand computation of volumes it quickly answers questions on
number, location, and significance of overlaps. For the first time neuroscientists have a
tool to calculate this potential connectivity between multiple neurons, and interact with
it in a spatial context.

The positive feedback on the design encourages us to follow a similar process in the
future, i.e. to have a graphics designer lead the design process. Judith Moosburner’s
artistic perspective on the topic and associated data enriched the technical and biolog-
ical aspects of the design in a substantial manner. Technical limits barely influenced
the process. Without such limitations in mind the unbound experimentation lead to an
innovative novel design.
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9.2 Future Work
Future efforts will explore options to extend the glyph interaction. This includes improv-
ing filtering techniques, better temporal coherence for glyph positioning, and encoding
overlap importance as glyph size.

The issue of positioning 2D overlays in a 3D context in general will come up again
in the future. The two approaches that we implemented may not be optimal for other
projects. Some current and future solutions may include force-based layouts or particle
systems with animations and multi-level abstractions to avoid clutter of too many 2D
overlays. This includes the apdaption of a solution to place labels in 3D, a topic with a
vast amount of literature resources.

The work done here for Drosophila melanogaster will be extended to other species.
Comparisons of neural circuits between different life stages of a species and even be-
tween species is of interest to the biologists. There are currently no tools available to
find and visualise higher order arborisation overlaps across developmental stages and
species. The extension to other model organisms and the advance of imaging tech-
niques brings new challenges. By now there exist well annotated images from electron
microscopy of the fruit fly such as the early larval stage data [24]. Exploring and com-
paring this multi-modal data will be one of the major challenges in the near future.

90



Bibliography

[1] Janet Abrams and Peter Hall. Else/where: mapping new cartographies of networks
and territories. University of Minnesota Design Institute Minneapolis, 2006.

[2] Ali Al-Awami, Johanna Beyer, Hendrik Strobelt, Narayanan Kasthuri, Jeff Licht-
man, Hanspeter Pfister, and Markus Hadwiger. Neurolines: A subway map
metaphor for visualizing nanoscale neuronal connectivity. IEEE Transactions on
Visualization and Computer Graphics, 20(12):2369–2378, 2014.

[3] Bilal Alsallakh, Wolfgang Aigner, Silvia Miksch, and Helwig Hauser. Radial sets:
Interactive visual analysis of large overlapping sets. IEEE Transactions on Visual-
ization and Computer Graphics, 19(12):2496–2505, 2013.

[4] Bilal Alsallakh, Luana Micallef, Wolfgang Aigner, Helwig Hauser, Silvia Miksch,
and Peter Rodgers. Visualizing sets and set-typed data: State-of-the-art and future
challenges. In Eurographics conference on Visualization (EuroVis)– State of The
Art Reports, pages 1–21. Eurographics, Eurographics, 2014.

[5] Amira. http://www.amira.com. Accessed: 2020-02-25.

[6] Salil S. Bidaye, Christian Machacek, Yang Wu, and Barry J. Dickson. Neuronal
control of drosophila walking direction. Science, 344(6179):97–101, 2014.

[7] James E. Blankenship and Becky Houck. Nervous system (invertebrate). Access-
Science, 2012.

[8] Hartmut Bohnacker, Benedikt Groß, Julia Laub, and Claudius Lazzeroni. Genera-
tive gestaltung. Verlag Hermann Schmidt, 2009.

[9] Adrien Bousseau, Matt Kaplan, Joëlle Thollot, and François X. Sillion. Interactive
watercolor rendering with temporal coherence and abstraction. In Proc. NPAR,
pages 141–149, 2006.

[10] BrainBase. https://implegacy.brainbase.at. VRVis Zentrum für Vir-
tual Reality und Visualisierung, Accessed: 2020-02-25.

91

http://www.amira.com
https://implegacy.brainbase.at


[11] BrainGazer. http://www.braingazer.org. VRVis Zentrum für Virtual
Reality und Visualisierung, Accessed: 2020-02-25.

[12] Valentino Braitenberg and Almut Schüz. Cortex: statistics and geometry of neu-
ronal connectivity. Springer Berlin, 1998.

[13] Cynthia Brewer. Designing Better Maps: A Guide for GIS Users. Environmental
Systems Research, 2004.

[14] Loren Carpenter. The a-buffer, an antialiased hidden surface method. In Pro-
ceedings of the 11th Annual Conference on Computer Graphics and Interactive
Techniques, pages 103–108, 1984.

[15] Ann-Shyn Chiang, Chih-Yung Lin, Chao-Chun Chuang, Chang-Huain Hsieh,
Chang-Wei Yeh, Chi-Tin Shih, Jian-Jheng Wu, Guo-Tzau Wang, Yung-Chang
Chen, Cheng-Chi Wu, Guan-Yu Chen, Yu-Tai Ching, Ping Lee, Chih-Yang Lin,
Hui-Hao Lin, Chia-Chou Wu, Hao-Wei Hsu, Yun-Ann Huang, and Jenn-Kang
Hwang. Three-dimensional reconstruction of brain-wide wiring networks in
drosophila at single-cell resolution. Current Biology, 21(1):1–11, 2011.

[16] Marina Chicurel. Databasing the brain. Nature, 406(6798):822–825, 2000.

[17] Christopher Coffin and Tobias Höllerer. Interactive perspective cut-away views
for general 3D scenes. In IEEE Symposium on 3D User Interfaces, pages 25–28.
IEEE, 2006.

[18] Cyril Crassin. Opengl 4.0+ abuffer v2.0: Linked lists of
fragment pages. http://blog.icare3d.org/2010/07/
opengl-40-abuffer-v20-linked-lists-of.html, 2010. Ac-
cessed: August 13, 2013.

[19] Vincent J. Dercksen, Robert Egger, Hans-Christian Hege, and Marcel Oberlaender.
Synaptic connectivity in anatomically realistic neural networks: Modeling and
visual analysis. In Eurographics Workshop on Visual Computing for Biology and
Medicine, pages 17–24, 2012.

[20] Barry J. Dickson. Wired for sex: the neurobiology of drosophila mating decisions.
Science, 322(5903):904–909, 2008.

[21] Joachim Diepstraten, Daniel Weiskopf, and Thomas Ertl. Transparency in interac-
tive technical illustrations. Computer Graphics Forum, 21(3):317–325, 2002.

[22] Feng Dong, Gordon J. Clapworthy, Hai Lin, and Meleagros A. Krokos. Non-
photorealistic rendering of medical volume data. IEEE Computer Graphics and
Applications, 23(4):44–52, 2003.

92

http://www.braingazer.org
http://blog.icare3d.org/2010/07/opengl-40-abuffer-v20-linked-lists-of.html
http://blog.icare3d.org/2010/07/opengl-40-abuffer-v20-linked-lists-of.html


[23] Rodney J. Douglas and Kevan A. C. Martin. Neuronal circuits of the neocortex.
Annual review of neuroscience, 27:419–451, 2004.

[24] Katharina Eichler, Ashok Litwin-Kumar, Feng Li, Youngser Park, Ingrid Andrade,
Casey M. Schneider-Mizell, Timo Saumweber, Annina Huser, Claire Eschbach,
Bertram Gerber, Richard D. Fetter, James W. Truman, Carey E. Priebe, L. F. Ab-
bott, Andreas S. Thum, Marta Zlatic, and Albert Cardona. The complete connec-
tome of a learning and memory center in an insect brain. bioRxiv, 2017.

[25] Niklas Elmqvist, Ulf Assarsson, and Philippas Tsigas. Employing dynamic trans-
parency for 3D occlusion management: Design issues and evaluation. In Human-
Computer Interaction – INTERACT 2007, pages 532–545. Springer Berlin Heidel-
berg, 2007.

[26] Niklas Elmqvist and Philippas Tsigas. A taxonomy of 3D occlusion management
for visualization. IEEE Transactions on Visualization and Computer Graphics,
14(5):1095–1109, 2008.

[27] Steven K. Feiner and Dorée Duncan Seligmann. Cutaways and ghosting: sat-
isfying visibility constraints in dynamic 3D illustrations. The Visual Computer,
8(5-6):292–302, 1992.
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